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a b s t r a c t

In this paper, we revisit the split decomposition of graphs and give new combinatorial and
algorithmic results for the class of totally decomposable graphs, also known as the distance
hereditary graphs, and for two non-trivial subclasses, namely the cographs and the 3-leaf
power graphs. Precisely, we give structural and incremental characterizations, leading to
optimal fully dynamic recognition algorithms for vertex and edge modifications, for each
of these classes. These results rely on the new combinatorial framework of graph-labelled
trees used to represent the split decomposition of general graphs (and also the modular
decomposition). The point of the paper is to use bijections between the aforementioned
graph classes and graph-labelled trees whose nodes are labelled by cliques and stars. We
mention that this bijective viewpoint yields directly an intersection model for the class of
distance hereditary graphs.

© 2012 Published by Elsevier B.V.

1. Introduction

The 1-join composition and its complementary operation, the split decomposition, range among the classical operations in
graph theory. It was introduced by Cunningham and Edmonds [8,9] in the early 80s and has, since then, been used in various
contexts such as perfect graph theory [27], circle graphs [5], clique-width [13] or rank-width [35]. The first polynomial time
algorithm to compute the split decomposition of a graph, proposed in [8], runs O(n3) time complexity. It was later improved
by Ma and Spinrad [32] who described an O(n2) time algorithm. So far Dahlhaus’ linear time algorithm [16] is the fastest.
Also, we mention the recent work [11] which nicely reformulates underlying routines from [16].

Roughly speaking, a split is a bipartition of the vertices of a graph satisfying certain properties (see Definition 2.7).
Computing the split decomposition of a graph consists in recursively decompose that graph according to bipartitions that are
splits. This process naturally yields a (split) decomposition tree [8,9] which represents the used bipartitions. However, such
a tree does not keep track of the adjacency of the input graph. Thereby alternative representations of the split decomposition
have been proposed. So far, the split decomposition graph appearing in [7,29,22,13] seems to be the most commonly used
representation. As an example of another related representation, let us mention the ∆-confluent graphs used for distance
hereditary graph drawing [19].

This paper starts with an adaptation of the split decomposition graph into a new and simple combinatorial structure,
namely graph-labelled trees. A graph-labelled tree is a tree in which every internal node u is labelled by a graph Gu whose
vertices, calledmarker vertices, are in one-to-one correspondence with the tree-edges incident to u. The definition of graph-
labelled tree is independent of the split decomposition. But equipped with the notion of accessibility, it precisely catches
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the combinatorial structure studied in [8] and provides a representation of the adjacencies of the graph to be decomposed.
A node or a leaf u is accessible from a leaf l ≠ u if for every tree-edges e = wv and e′ = vw′ on the l, u-path in T , e and
e′ are mapped to adjacent marker vertices in Gu. Every graph-labelled tree is associated with a graph, its accessibility graph,
whose vertex set is the leaf set of the tree. Two vertices x and y of the accessibility graph are adjacent if and only if the
corresponding leaves are accessible from each another.

Surprisingly, revisiting the split decomposition under this original approach yields new combinatorial and algorithmic
results, as well as alternative proofs or simpler constructions of previously known results. Section 2 introduces the
combinatorial framework of graph-labelled trees which apply to arbitrary graphs. The main results of split decomposition
theory are revisited from the graph-labelled trees viewpoint. The split decomposition can be seen as a refinement of the
modular decomposition [20,26]. We then describe links between these two graph decompositions techniques in terms of
graph-labelled trees. We also establish useful general lemmas.

The rest of the paper concentrates on totally decomposable graphs (with respect to the split decomposition), also known
as the distance hereditary graphs [4,24]. Distance hereditary graphs play an important role in other classical decomposition
techniques since they are exactly the graphs of rank-width 1 [35] and range among the elementary graphs of clique-width
3 [10]. The family of distance hereditary graphs contains a number of well-studied graph classes such as cographs which
are the graphs totally decomposable by the modular decomposition and 3-leaf powers which form a subfamily of chordal
distance hereditary graphs. We apply our techniques to these latter two graph families. Our results are consequences of
characterizations of the three graph classes we consider (distance hereditary graphs, cographs and 3-leaf powers). Each of
these characterizations, translated into the graph-labelled tree setting, establishes a one-to-one correspondence between
the graph class and a set of clique–star-labelled trees1 that satisfy some simple conditions on the distribution of star and
clique labels on its nodes.

Our first result, although not the most important, witnesses the relevance of the graph-labelled tree approach to study
the split decomposition. The bijection between the clique–star trees and distance hereditary graphs togetherwith the notion
of accessibility naturally yields an intersection model that characterizes distance hereditary graphs (Theorem 3.2). Though
it was established that distance hereditary graphs form an intersection graph family [30], no intersection model had been
explicitly given (see [38], or [39] page 309).

Among the main contributions of the paper, we develop vertex incremental characterizations for distance hereditary
graphs, cographs and 3-leaf powers (see Section 3). That is, for each of these three graph classes, say F , we provide a
necessary and sufficient condition under which adding a vertex x adjacent to a certain neighbourhood S in a given graph
G ∈ F , yields a graph G′ = G+(x, S)which also belongs toF . In comparison, a vertex elimination ordering characterization
(see e.g. [3]) only provides sufficient conditions under which a vertex can be added. The incremental characterization
of distance hereditary graphs (Theorem 3.4) is new. Restricted to cographs (Theorem 3.7), it is equivalent the known
incremental characterization of cographs [12] which is based onmodular decomposition.We then derive a new incremental
characterization of 3-leaf powers (Theorem 3.9).

We also provide edge-modification characterizations (see Section 5): necessary and sufficient conditions underwhich for a
given graph G belonging to a class of graphsF , the addition (or deletion) of an edge e of G results in a graph ofF . Let us point
out that an edge-modification characterization (or algorithm) cannot be used to derive a vertex incremental characterization
(or algorithm), since removing/adding an edge incident to a vertex may lead out of the class while adding/removing all
edges adjacent to this vertex may not. Indeed we exhibit an example (Remark 5.3) of distance hereditary graph (and
cograph) containing a vertex x such that removing any edge incident to x results in a non-distance hereditary graph. An
edge-modification characterization was known for distance hereditary graphs [41] and for cographs [37] but not for 3-leaf
powers. Our characterization for distance hereditary graphs consists in testing whether the path between the two leaves
corresponding to the vertices incident to the modified edge has length at most 4 and belongs to a small given finite set. So,
unlike the characterization proposed in [41], which is based on the global breadth-first search layering structure of distance
hereditary graphs [24], ours is really local, have simpler and shorter proofs and is a natural generalization of the edge-
modification characterization of cograph of [37]. Our edge-modification characterizations of cographs and 3-leaf powers
are derived from our DH graph one.

These characterizations (incremental and edgemodification) are then used to design fully dynamic recognition algorithms.
For a class F of graphs, the task is to maintain a representation of the input graph under vertex and edge modifications as
long as the graph belongs to F . Let us point out that the series of modifications is not known in advance. In order to ensure
locality of the computation, most of the known dynamic graph algorithms are based on decomposition techniques. For
example, the SPQR tree data structure has been introduced in order to dynamically maintain the 3-connected components
of a graph which allows on-line planarity testing [18]. Existing literature on this problem includes representation of chordal
graphs [28], proper interval graphs [25], cographs [37], directed cographs [15], permutation graphs [14]. The data structures
used for the last four graph families are strongly related to the modular decomposition tree [20].

For each of the three aforementioned classes of graphs, we provide an optimal fully dynamic algorithm that maintains
the split tree representation. The time complexity is linear in the number of edges involved in each modifications (i.e.
number of neighbours in case of vertex modifications). Our main algorithmic result is the vertex-insertion algorithm for

1 Clique–star (labelled) trees are graph-labelled trees whose graph-labels are cliques (complete graphs) or stars (complete bipartite graphs K1,t ).
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distance hereditary graphs (Section 4.1). Briefly, it amounts to: first, a single search of the subtree of the split tree spanned
by the neighbours of the new vertex x to locate where the new leaf x should be inserted (if possible); and then, a simple
local transformation of the graph-labelled tree. As distance hereditary graphs form an hereditary class, the vertex-deletion
routine consists of an easy local transformation.When adapted to cographs, our vertex-only dynamic algorithm (Section 4.3)
is equivalent to the one of [12]. No such algorithm was known for 3-leaf powers (Section 4.4). The edge-only dynamic
algorithms are direct consequences of the edge-modification characterizations.

Finally, let us observe that as distance hereditary graphs, cographs and 3-leaf power graphs are hereditary graph families,
our fully dynamic recognition algorithms can be used in the context of static graphs as well. This yields, for each of the three
graph classes, linear time recognition algorithms (Corollary 4.2) to be comparedwith previous ones ([24,17,6,33] for distance
hereditary graphs). Moreover, our bijective representations allow to derive directly easy isomorphism tests for elements of
these classes (Corollary 4.3).

The algorithmic results presented in this paper are summarized in the table below.

Distance hereditary graphs Vertex-only Sections 4.1 and 4.2 New

Edge-only Section 5.1 Independent of and shorter than [41]

Refinement for cographs Vertex-only Section 4.3 Equivalent to [12]

Edge-only Section 5.3 Equivalent to [37]

Refinement for 3-leaf powers Vertex-only Section 4.4 New

Edge-only Section 5.4 New

2. Graph-labelled trees, split and modular decompositions

The purpose of this section is to introduce the notion of graph-labelled tree and to show that the theory of split
decomposition [8] as well as the theory of modular decomposition [20] can be stated within this framework. Before that, let
us first introduce the basic terminology.

In the paper, every graph G = (V (G), E(G)), or G = (V , E) when clear from context, is simple and loopless. For a subset
S ⊆ V (G), G[S] is the subgraph of G induced by S. If T is a tree and S a subset of leaves of T , then T (S) is the smallest subtree
of T spanning the leaves of S. If x is a vertex of G then G − x = G[V (G) − {x}]. Similarly if x ∉ V (G), G + (x, S) is the graph
G augmented by the new vertex x adjacent to S ⊆ V (G). Similarly if x and y are two vertices of G such that xy ∉ E(G) (resp.
xy ∈ E(G)), then define G+ e = G′(V (G), E(G) ∪ {e}) (resp. G− e = G′(V (G), E(G) \ {e})) with e = xy. We denote N(x) the
neighbourhood of a vertex x. The neighbourhood of a set S ⊆ V (G) is N(S) = {x ∉ S | ∃y ∈ S, xy ∈ E(G)}. The clique is
the complete graph and the star is the complete bipartite graph K1,n. The universal vertex of the star is called its centre and
the degree one vertices its degree-1 vertices. Edges of a tree will be called tree-edges, and internal vertices of a tree T will be
called nodes.

2.1. Graph-labelled trees

Definition 2.1. A graph-labelled tree (T , F ) is a tree T in which every node v of degree k is labelled by a graph Gv ∈ F on k
vertices, calledmarker vertices, such that there is a bijection ρv from the tree-edges of T incident to v to the marker vertices
of Gv . If ρv(e) = q then q is called an extremity of e.

Let (T , F ) be a graph-labelled tree and l be a leaf of T . A node or a leaf u different from l is l-accessible if for every tree-
edges e = wv and e′ = vw′ on the l, u-path in T , we have ρv(e)ρv(e′) ∈ E(Gv). By convention, the unique neighbour of the
leaf l in T is also l-accessible. See Fig. 1 for an example.

Definition 2.2. The accessibility graph of a graph-labelled tree (T , F ) is the graph Gr(T , F ) whose vertex set is the leaf set
of T , and in which there is an edge between x and y if and only if y is x-accessible. In this setting, we say that (T , F ) is a
graph-labelled tree of Gr(T , F ).

An example of a graph-labelled tree and its accessibility graph is given on Fig. 1. We often abuse the language and call a
leaf of T a vertex of the accessibility graph and vice versa if convenient.

Lemma 2.3. Let (T , F ) be a graph-labelled tree. The accessibility graph Gr(T , F ) is connected if and only if for every node v of
T the graph Gv ∈ F is connected.

Proof. Assume there is a node v of T such that Gv is not connected and let Cv be a connected component of Gv . Let L be the
set of leaves belonging to a subtree attached to a marker vertex of Cv . Then by Definition 2.2, for any leaf l′ ∉ L, none of the
leaves of L is l′-accessible. Thereby in Gr(T , F ), the set of vertices in L is disconnected from the rest of the graph.
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Fig. 1. A graph-labelled tree and its accessibility graph. The leaf 12 is 4-accessible (and vice versa), hence vertices 4 and 12 are adjacent in the accessibility
graph. Every node is 4-accessible.

Assume for every node v, the graph-label Gv is connected. We prove that G = Gr(T , F ) is connected by induction of the
number k of nodes of T . If k = 1, this is obviously true since Gr(T , F ) and Gv are isomorphic, where v is the only node of T .
Assume that T contains k > 1 nodes. Let u be a node such that all its neighbours but one, say v, are leaves (there always
exists such a node). Let p be the marker vertex of Gv such that ρv(uv) = p. Let (T ′, F ′) be the graph-labelled tree obtained
from (T , F ) by replacing u and its leaves by a new leaf lu. Notice that by construction, every leaf l such that p is l-accessible
is lu-accessible. Observe that G is obtained from G′ = Gr(T ′, F ′) as follows: V (G) = V (G′) \ {lu} ∪ Lu, where Lu is the set of
leaves attached to u in T ; every vertex x ∈ Lu such that p was x-accessible in (T , F ) is adjacent to every neighbour of lu in
G′; the adjacencies between the new vertices are those defined by Gu. As by assumption both G′ (induction hypothesis) and
Gu are connected, G is also connected. �

From now on, unless explicitly stated, we consider connected graphs (i.e. the graphs belonging to F in a graph-labelled
tree (T , F ) are also connected, by Lemma 2.3). The next lemma is central to proofs of further theorems.

Lemma 2.4. Let (T , F ) be a graph-labelled tree of a connected graph G and let v be a node of T . Then every maximal tree of
T − v contains a leaf l such that v is l-accessible.

Proof. Let u be a neighbour of node v in T and Tu be the maximal tree of T − v containing u. The property trivially holds if
u is a leaf. So assume Tu contains k ≥ 1 (non-leaf) nodes. If u is the only node of Tu, as Gu is connected, there exists a leaf l
neighbouring u such that the marker vertex ρu(lu) is adjacent in Gu to the marker vertex ρu(uv). Thereby v is l-accessible.
Assume by induction that the property is satisfied for every tree with k′ < k nodes. As Gu is connected, u has a neighbour
w ≠ v such that ρu(uv) and ρu(uw) are adjacent in Gu. Let Tw be the maximal tree of Tu − u containing w. By induction
hypothesis, Tw contains a leaf l to which u is l-accessible. By the choice of w, v is also l-accessible. �

Corollary 2.5. Let (T , F ) be a graph-labelled tree of a connected graph G. Let l be a leaf of T , and e = uv, e′ = uv′ be distinct
tree-edges such that u is a l-accessible and e belongs to the u, l path in T . Then ρu(e)ρu(e′) ∈ E(Gu) if and only if there exists a
l-accessible leaf l′ in the maximal tree Tv′ of T − e′ containing v′.

Proof. If there exists a l-accessible leaf l′ in the maximal tree of T − e′ containing v′, then by Definition 2.2, we have
ρu(e)ρu(e′) ∈ E(Gu). So assume ρu(e)ρu(e′) ∈ E(Gu). By Lemma 2.4, Tv′ contains a leaf l′ such that u is l′-accessible. As
u is also l-accessible, then l′ is l-accessible. �

The above Corollary 2.5 can be rephrased as follows: if u and v are two adjacent l-accessible nodes, then there exists a
l-accessible leaf l′ such that the l, l′-path contains the tree-edge uv.

Corollary 2.6. Let (T , F ) be a graph-labelled tree of a connected graph G. Then every graph Gv ∈ F is isomorphic to an induced
subgraph of G.

Proof. Let u1, . . . , uk be the neighbours of node v in T and T1, . . . , Tk be the corresponding maximal trees of T − v. By
Lemma 2.4, for all i, 1 ≤ i ≤ k, the subtree Ti of T contains a leaf li such that v is li-accessible. It follows that the induced
subgraph G[{l1 . . . lk}] is isomorphic to Gv . �

Let (T , F ) be a graph-labelled tree of a graph G. Let us observe that a graph-labelled tree of any induced subgraph
H = G[X] can be retrieved from (T , F ). Let T (X) be the smallest subtree of T with set of leaves X . For any Gv ∈ F labelling



712 E. Gioan, C. Paul / Discrete Applied Mathematics 160 (2012) 708–733

Fig. 2. The node-split and the node-join operations on a graph-labelled tree.

a node v of T ′, let G′v be the subgraph induced by the marker vertices associated with tree-edges belonging to T ′. Then set
FX = {G′v | v ∈ T (X)} and for every v ∈ T (X), ρ ′v is the bijection between the tree-edges of T (X) incident to v and the
vertices of G′v such that ρ ′v(e) = p if and only if ρv(e) = p. By construction we have Gr(T (X), FX ) = H . Notice that the
degree two nodes of T (X) can be removed by contracting one of their two incident tree-edges.

2.2. Split decomposition

Definition 2.7 ([8]). A split of a graph G is a bipartition (V1, V2) of V (G) such that (1) |V1| ≥ 2 and |V2| ≥ 2; and (2) every
vertex of N(V1) is adjacent to every vertex of N(V2).

A graph is degenerate (with respect to the split decomposition) if every partition of its set of vertices into two non-
singleton parts is a split. The only degenerate graphs are known to be the cliques and the stars. A graph without any split is
called prime (with respect to the split decomposition).

The split decomposition of a graph G, as originally studied in [8], consists of: finding a split (V1, V2), decomposing G
into G1 = G[V1 ∪ {x1}], with x1 ∈ N(V1) and G2 = G[V2 ∪ {x2}] with x2 ∈ N(V2), x1 and x2 being called split marker
vertices; and then recursively decomposing G1 and G2. When the process stops, the resulting graphs are called components
of the split decomposition. Adding, at each decomposition step, an edge between the pair of split marker vertices yields split
decomposition graph. Though the idea of a tree decomposition appears in [8], Cunningham’smain result states the uniqueness
of the set of components of a split decomposition but does not focus on the structure linking them together. As we will see,
the graph-labelled tree framework yields a natural formulation of Cunningham’s result in terms of tree. To clarify the link
between the two representations, let us point out that the split marker vertices in the above terminology will correspond
in our setting in terms of graph-labelled trees to the marker vertices which are extremities of internal tree-edges.

Lemma 2.8. Let (T , F ) be a graph-labelled tree with no binary node and T1, T2 be the maximal trees of T − e where e is a
tree-edge non-incident to a leaf. Then the bipartition (L1, L2) of the leaves of T , with Li being the leaf set of Ti for i ∈ {1, 2}, and
assuming |Li| > 1, defines a split in the graph Gr(T , F ).

Proof. Let e = t1t2 and let l1 and l2 be leaves of L1 and L2 respectively. By definition of Gr(T , F ), l1 and l2 are adjacent if and
only if t2 is l1-accessible and t1 is l2-accessible. It follows that (L1, L2) defines a split of Gr(T , F ). �

Wecan naturally define the node-split operation and its converse, the node-join, on a graph-labelled tree (T , F ) as follows
(see Fig. 2):

• Node-split in (T , F ): Let v be a node of T whose graph Gv has a split (A, B). Let GA and GB be the subgraphs resulting
from the split (A, B) of Gv and a, b be the respective split marker vertices. Splitting the node v consists of substituting
v by two adjacent nodes vA and vB, respectively labelled by GA and GB, such that for every p ∈ V (GA) different from
a, ρ−1vA

(p) = ρ−1v (p) and ρ−1vA
(a) = vAvB (similarly for every q ∈ V (GB) different from b, ρ−1vB

(q) = ρ−1v (q) and
ρ−1vB

(b) = vAvB).
• Node-join in (T , F ): Let uv be a tree-edge of T . Then joining the nodes u and v consists of contracting the tree-edge uv

and substituting u and v by a single node w labelled by the graph Gw defined as follows:

V (Gw) = (V (Gu)− {ρu(uv)}) ∪ (V (Gv)− {ρv(uv)})

E(Gw) =


E(Gu) ∪ E(Gv)

∩


V (Gw)× V (Gw)


∪


NGv


ρv(uv)


× NGu


ρu(uv)


.

For every marker vertex p ∈ V (Gw), ρ−1w (p) = ρ−1v (p) if p ∈ V (Gv) and ρ−1w (p) = ρ−1u (p) if p ∈ V (Gu).

Observe that if (T , F ) is obtained from (T ′, F ′) by a node-join or a node-split operation, then it follows from the
definitions that Gr(T , F ) = Gr(T ′, F ′). This show that a given graph is not represented by a unique graph-labelled tree.
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Fig. 3. Node-split and node-join operations on cliques and stars.

Among the node-join operations, let us distinguish: the clique-join, operating on two neighbouring nodes labelled by
cliques, and the star-join, operating on star-labelled neighbouring nodes u, v such that the tree-edge uv links the centre
of one star to a degree-1 vertex of the other. The converse operations are called respectively clique-split and star-split. See
Fig. 3. Also, if a node v of a graph-labelled tree has degree 2 in a graph-labelled tree, then Gv consists of an edge between
two marker vertices and thereby v can be contracted without loss of information. A graph-labelled tree (T , F ) is reduced
if every node has degree > 2 and neither a clique-join nor a star-join can be applied. So hereafter we only consider graphs
with at least 3 vertices.

We are now able to reformulate the main split decomposition theorem first established in [8]. For completeness of the
paper, a direct proof of Theorem 2.9 in terms of graph-labelled trees is provided in the Appendix.

Theorem 2.9 (Cunningham’s Theorem Reformulated). For every connected graph G, there exists a unique reduced graph-labelled
tree (T , F ) such that G = Gr(T , F ) and every graph of F is prime or degenerate.

For a connected graph G, the split tree ST (G) of G is the unique reduced graph-labelled tree (T , F ) in the above
Theorem 2.9. As an example, see Fig. 1 where the graph-labelled tree is effectively reduced.

Corollary 2.10. Let ST (G) = (T , F ) be the split tree of a connected graph G = (V , E). Then every split of the graph G is the
bipartition of the set of leaves of T induced by removing a tree-edge of (T ′, F ′), a graph-labelled tree which is obtained from
(T , F ) by at most one node-split operation on a degenerate node.

The next lemma will be crucial for algorithm complexity means.

Lemma 2.11. Let ST (G) = (T , F ) be the split tree of a connected graph G. For every vertex x ∈ V (G), T (N(x)) has at most
2.|N(x)| nodes.

Proof. Let u and v be two adjacent nodes in T (N(x)) such that v has degree 2 in T (N(x)) and u is on the x, v-path. Let a be
the marker vertex of Gv such that ρ−1v (a) = uv. Then a has degree 1 in Gv otherwise, by Corollary 2.5, node v would have
degree > 2. Hence Gv is not prime (a graph with a pendant vertex has a split), hence it is a star with centre b such that ab is
an edge of Gv . Let w be the node neighbour of v such that ρ−1v (b) = vw. If w is not a leaf, then w has degree > 2 in T (N(x)),
otherwise it would be a star ρw(vw) being a degree one marker vertex and the tree would not be reduced. So T (N(x)) does
not contains two adjacent degree two nodes. Hence the result. �

2.3. Modular decomposition

The modular decomposition of a graph is a well understood decomposition process (see [31] for a complete survey).
However the purpose of this section is to show that the graph-labelled trees are also a natural tool to represent the modular
decomposition. Thereby it provides a framework common to the split and the modular decomposition.

Definition 2.12. A module of a graph G is a set M of vertices such that every vertex x outside M is either adjacent to all the
vertices ofM (M ⊆ N(x)) or to none of them (M ∩ N(x) = ∅).

Singleton vertex sets and the whole vertex set are the trivial modules of G = (V , E). A graph is degenerate with respect
to the modular decomposition, or M-degenerate (to avoid confusion with the split decomposition), if every subset of its
vertices is a module. The M-degenerate graphs are cliques or stables (the graph with an empty edge set — or independent
set). Intuitively, cliques and stables play the same role with respect to the modular decomposition than cliques and stars
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Fig. 4. A graph on the right, its modular decomposition tree in the middle, and its split tree on the left. The node in a larger circle is prime in each
decomposition. The grey squared node, call it u, corresponds to the root of the modular decomposition tree. Node u isM-prime, but not prime for the split
decomposition. Observe that a node-split on u yields stars whose centres are not towards each other. The modular graph-labelled tree is obtained by the
converse node-join operation, i.e. replacing the dashed squared subtree of the split tree by u.

with respect to the split decomposition. A graph is primewith respect to themodular decomposition, orM-prime, whenever
all its modules are trivial.

If P = {M1, . . . ,Mk} is a partition of the vertex set of a graph G, the quotient graph G/P is defined as the unique (up to
isomorphism) subgraph induced by a subset P ⊂ V such that for all i, 1 ≤ i ≤ k, |P ∩ Mi| = 1. Each vertex xi ∈ P ∩ Mi is
called the representative ofMi, for i, 1 ≤ i ≤ k.

As the split decomposition, the modular decomposition of a graph G = (V , E) is commonly understood as a recursive
process: (1) find a partition of the vertex set V into modules say P = {M1, . . . ,Mk}; and (2) recursively decompose the
subgraphs G[Mi] for all i, 1 ≤ i ≤ k. This naturally yields a rooted tree decomposition. In 1967, Gallai [20] showed that every
graph G has a canonical modular decomposition tree, denoted MD(G), which is obtained by choosing at the each step of the
recursive process the coarsest possible partition. The leaf set of MD(G) is the vertex set of G and each node is labelled by
the quotient graph associated with the corresponding partition. These graph-labels are either clique, stable or graphs that
areM-prime graphs. In the usual terminology, clique-labelled nodes are called series (or 1-nodes) and stable labelled nodes
are called parallel nodes (or 0-nodes). The canonicity of the modular decomposition tree results from the constraint that
no series node (resp. parallel node) is a child of a series node (resp. parallel node). Two vertices x and y are adjacent in G if
and only if their representative vertices are adjacent in the quotient graph G/P . Fig. 4 shows an example of a graph and its
modular decomposition tree.

Let us now describe how the modular decomposition tree MD(G) of a connected graph G naturally transforms into a
reduced graph-labelled tree (TM , FM) whose accessibility graph is G (see Fig. 4):

1. Unless the root ofMD(G) has degree two, TM is isomorphic to the tree underlyingMD(G). IfMD(G) has a binary root, then
TM is isomorphic to the tree resulting from the contraction inMD(G) of one of the tree-edges incident to the root.

2. For a node u, distinct from the root of MD(G), with associated quotient graph G/Pu labelling u in MD(G), the label Gu in
(TM , FM) is obtained by adding a universal marker vertex to G/Pu which is mapped to the tree-edge uv where v is the
father of u in MD(G).

Note that if u is a parallel node in MD(G), then it becomes a star node in (TM , FM). It is straightforward to see from the
definitions that G is the accessibility graph of (TM , FM). Let us also point out that the root node of MD(G) is binary if G
has a universal vertex x and G − x is M-prime or if G is the disjoint union of two connected components. Finally, (TM , FM)
is reduced since two series nodes or two parallel nodes are not adjacent in the modular decomposition tree. We will call
modular graph-labelled tree this graph-labelled tree (TM , FM).

We can now reformulate Gallai’s theorem [20] in term of graph-labelled trees.

Theorem 2.13 (Gallai’s Theorem Reformulated). For every connected graph G, there exists a unique reduced graph-labelled tree
(TM , FM) with G = Gr(TM , FM) such that TM contains a node or a tree-edge r, called the root, and for every node v ≠ r, we
have (1) the graph Gv contains a universal vertex x such that Gv−x is M-prime or M-degenerate, and (2) the tree-edge associated
with x in TM is on the path between v and r.

Lemma 2.14. Let G be a connected graph. In MD(G), the label of a non-root node u is M-prime if and only if its corresponding
label in the modular graph-labelled tree (TM , FM) is prime for the split decomposition.

Proof. Follows from the definitions of split and module, and from the construction above. �
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Fig. 5. A clique–star reduced tree and its accessibility DH graph.

Using Lemma 2.14 we can describe how the split tree and the modular graph-labelled tree can be retrieved from each
other:

• From themodular graph-labelled tree (TM , FM) to the split tree ST (G): If the root of TM is not a node, then ST (G) = (TM , FM).
If the root of TM is a node u, then substitute the split tree of Gu to node u (i.e. node-split (TM , FM) according to the splits
of Gu and lastly make clique-joins or star-joins to get a reduced graph-labelled tree).
• From the split tree ST (G) to the modular graph-labelled tree (TM , FM): If ST (G) = (T , F ) contains at least two node, then

pick a node u such that every incident tree-edge but one, say e, is adjacent to a leaf, test if ρu(e) is a universal vertex of
Gu. If so, then delete u from T (i.e. replace it with a leaf) and repeat until no deletion is possible. The set of remaining
nodes induces a subtree T ′ of T . Then (TM , FM) results from the series of node-joins applied on each internal tree-edge
of T ′ (i.e. substituting a single node labelled by the accessibility graph of T ′ to T ′).

It is worth to notice that a subtree of the split tree, namely T ′, plays the role of the root of the modular decomposition
tree, though, unlike the modular decomposition tree, the split tree is fundamentally unrooted. Fig. 4 illustrates these two
decompositions on an example.

3. Split tree characterizations of restricted graph classes

This section presents bijective and incremental characterizations of distance hereditary graphs, cographs and 3-leaf
power graphs, in terms of their split tree. The characterization of distance hereditary graphs yields an intersection model
which answers an open question (see [39], page 309). Incremental characterizations of each of these three graph classes
are also derived. Such a result was already known for cographs [12] (based on the modular decomposition tree), but not
for distance hereditary graphs neither for 3-leaf powers. These characterizations will be the basis of the vertex-only fully
dynamic recognition algorithms developed in Section 4.

3.1. Distance hereditary graphs

Definition 3.1. A graph G is distance hereditary (DH for short) if for every connected subgraph H of G, the distance between
any two vertices x and y in H is the same than the distance between x and y in G.

A graph is totally decomposable by the split decomposition if every induced subgraph with at least 4 vertices contains a
split. By [24], it is known that a graph is DH if and only if it is totally decomposable by the split decomposition, i.e. the nodes of
its split tree are labelled by cliques and stars. Hence DH graphs are exactly accessibility graphs of clique–star-labelled trees,
clique–star trees for short. Among the possible clique–star trees, the split tree is the unique reduced one. In other words,
there is a bijection between DH graphs and reduced clique–star trees. Fig. 5 gives an example. We mention that ternary
clique–star trees were used in [19] to draw DH graphs.

Let us notice that the classical construction of DH graphs [4] (there exists a linear ordering for vertex insertion such that
each new vertex y is (a) true twin, (b) false twin, or (c) pendant) is easy to read on the clique–star tree, see Fig. 6. We also
mention that DH graphs can be characterized by forbidden induced subgraphs [4] (see Section 5 for details).

In what follows, we will call simply clique node, resp. star node, a clique-labelled node, resp. star-labelled node.
An intersection model. Given a family S of sets, one can define the intersection graph I(S) as the graph whose vertices are
the elements of S and there is an edge between two elements if and only if they intersect. Many restricted graph families
are defined or characterized as the intersection graphs (e.g. chordal graphs, interval graphs. . . see [30]). Graph families
supporting an intersection model can be characterized without even specifying the model [30]. This result applies to DH
graphs, but nomodel has been yet given (see [39], page 309). Based on clique–star trees, an intersectionmodel can be easily
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Fig. 6. Usual (static) incremental construction of DH graphs: (a) adding a true twin y of vertex x amounts to insert a degree 3 clique node on the tree-edge
incident to leaf x and attach leaf y to that node; (b) adding a false twin y of vertex x amounts to insert a degree 3 star node on the tree-edge incident to leaf
x such that x and y are mapped to the extremities of the star; and (c) adding a pendant vertex y to vertex x amounts to insert a degree 3 star node whose
centre is mapped to x and to which y is attached.

Fig. 7. Consider that the dashed node is omitted, that is precisely, the dashed node and its three incident tree-edges are deleted, and replaced with a
tree-edge between its two adjacent nodes. Then the figure represents the split tree ST (G) of a DH graph. Elements of S ⊆ V (G) are represented as grey
leaves. The subtree T (S) is representedwith bold nodes and tree-edges. Check that the properties of Theorem 3.4 are satisfied: the fully accessible star node
is oriented towards the unique partially accessible node, whereas the singly accessible star node is not. So, if a vertex x is added to G with neighbourhood
S, then the graph G+ x is DH. Its split tree ST (G+ x) is obtained by inserting the dashed node.

derived. Note that it can be equivalently stated by considering only reduced clique–star trees, or even only ternary ones. We
call accessibility set of a leaf l in a graph-labelled tree the set of pairs {l, l′}with l′ a l-accessible leaf, or, equivalently, the set
of paths in the tree joining l to a l-accessible leaf l′. Notice that an accessibility set could also be defined as the set of paths
in the clique–star tree from a given leaf to its accessible leaves.

Theorem 3.2 (Intersection Model). A graph is distance hereditary if and only if it is the intersection graph of a family of
accessibility sets of leaves in a set of clique–star trees.

Proof. Follows directly from the representation of DH graphs as accessibility graphs of clique–star trees. �

Observe that finding an intersection model always amounts to characterize adjacencies in terms of an independent
structure (in our case the clique–star trees) in which some objects correspond to vertices and any arbitrary set of those
objects induces a graph belonging to the required graph class. In that sense, our intersection model can be compared with
otherwell-known intersectionmodels. For example, consider the subtrees of a treemodel of chordal graphs [21]. Thismodel
could be derived from the characterization of chordal graphs as the set of graphs having a tree decomposition [36] in which
every node induces a clique. Likewise, our DH intersectionmodel derives from the fact that DH graphs are the graphs whose
split tree is a clique–star tree. Both models rely on some tree-like structure. In the model of chordal graphs, the subtrees
represent the interlacing structure of the sets Cx of clique bags, where, for each vertex x, Cx is the set of bags containing x. In
the DH model the accessibility sets represent the interlacing structure of the sets of alternating paths with a common leaf
in the tree, depending on the way cliques and stars are spread over the nodes of the tree.
Incremental characterization. Let G be a connected DH graph and let ST (G) = (T , F ) be its split tree. Given a subset S of V (G)
and x ∉ V (G), we want to know whether the graph G+ (x, S) is DH or not. We first discard the obvious case where |S| = 1
which consists in adding a pendant vertex x attached to y ∈ V (G). In that case, it is well known that G+ (x, S) is a DH graph
if and only if G is.

Definition 3.3. For S ⊆ V (G), let T (S) be the smallest subtree of T with set of leaves S. Let u be a node of T (S).

1. u is fully accessible (w.r.t. S) if every maximal tree of T − u contains a leaf l ∈ S;
2. u is singly accessible (w.r.t. S) if it is a star node and exactly two maximal trees of T − u contain a leaf l ∈ S among which

the maximal tree containing the neighbour v of u such that ρu(uv) is the centre of Gu;
3. u is partially accessible (w.r.t. S) otherwise.

We say that a star node v is oriented towards a tree-edge (or a node) t of T if the tree-edge e such that ρv(e) is the centre
of Gv is on the path in T between t and v. Fig. 7 illustrates Definition 3.3 above and Theorem 3.4 below.
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Fig. 8. The P4 is the smallest graph that is not a cograph. Although its split tree contains only star nodes, there is no tree-root towards which the stars are
oriented.

Theorem 3.4 (Vertex Incremental Characterization). Let G be a connected distance hereditary graph and ST (G) = (T , F ) be its
split tree. Then G+ (x, S), with |S| > 1 is distance hereditary if and only if:

1. at most one node of T (S) is partially accessible;
2. every clique node of T (S) is either fully or partially accessible;
3. if there exists a partially accessible node u in T (S), then every star node v ≠ u of T (S) is oriented towards u if and only if it is

fully accessible; otherwise, there exists a tree-edge e of T (S) towards which every star node of T (S) is oriented if and only if it
is fully accessible.

Proof. ⇒ Since G + (x, S) is a DH graph, it is the accessibility graph of a ternary clique–star tree (T̃ , F̃ ). Let u be the
node of T̃ to which x is attached and let v, w be its neighbours. Now consider the clique–star tree (T ′, F ′) obtained by
applying every possible clique-join or a star-join to tree-edges different from uv and uw. Notice that ST (G) is obtained
by (1) removing the leaf x and the marker vertex ρu(xu), (2) performing a node-join to get rid of the degree two node u
thereby creating a tree-edge vw, and (3) if needed apply a node-join on the tree-edge vw.

Assume the node-join on vw is not required to obtain ST (G). Then every node of T (S) is a node of T ′. By construction,
every leaf of S is x-accessible in (T ′, F ′). Then the three conditions are a consequence of Corollary 2.5. Precisely, observe
that if u is a clique node, then T (S) does not contain any partially accessible node, every star node is oriented towards
the tree-edge vw if and only if it is fully accessible. If u is a star node, then ρu(xu) is a degree-1 marker vertex. In that
case, if ρu(uv) is the centre Gu and v is a star node, then v is the only partially accessible node in T (S) (the case ρu(uw)
is the centre Gu and w is a star node is symmetric).

Assume ST (G) is obtained after a node-join on vw which results on a new node u′. Then every node of T (S) except
u′ corresponds to a node of T ′. Again by Corollary 2.5 the nodes of T (S) different than u′ are all singly or fully accessible,
and a star node is oriented towards u′ if and only if it is fully accessible. If x is adjacent to a star node u in T ′, or if x is
adjacent to a clique node u in T ′ and u′ is a star, then it is straightforward to check that u′ is partially accessible and the
conditions are satisfied. If x is adjacent to a clique node u in T ′ and u′ is a clique, then u′ is fully accessible and a star node
is oriented towards any tree-edge incident to u′ if and only if it is fully accessible, so the conditions are satisfied.

⇐ Assume there is no partially accessible node. So there exists a tree-edge e = uv of T (S) towards which the star nodes of
T (S) are oriented if and only if they are fully accessible. Let (T ′, F ′) be the clique–star tree obtained by: (1) subdividing
e = uv into eu = uw and ev = wv; (2) attaching the leaf x to w (which is thereby a ternary node); (3) making w a clique
node if the two maximal trees of T − e contain a leaf of S, otherwise w is a star node whose centre is ρw(wu).

Every node of T (S) is either fully accessible or singly accessible, a node of degree 2 in T (S) is singly accessible. Let w′

be a node on the path in T between any y ∈ S and e and let ey, ex be the two tree-edges of that path incident to w′. By
Definition 3.3, we have that ρw′(ex)ρw′(ey) ∈ E(Gw′). It follows that every y ∈ S is a neighbour of x in Gr(T ′, F ′). Let
us now prove that every z ∉ S is not a neighbour of x in Gr(T ′, F ′), thereby proving that Gr(T ′, F ′) = G + (x, S). Let
w′ be the node of T (S) which is the closest to the leaf z, and let ew′ be the tree-edge incident to w′ in the path between
w′ and z. By the choice of w′, w′ cannot be fully accessible (otherwise it would not be the closest to z). So w′ is singly
accessible and thereby is a star node. Its centre is not oriented towards e by condition 3, and not oriented towards ew′

by Definition 3.3. It follows that the neighbour w′′ of w′ on the path between w′ and e is not z-accessible. Thus z is not
a neighbour of x in Gr(T ′, F ′) = G+ (x, S).

Assume there is a partially accessible node u. Then it suffices to node-split the node u into two new nodes v and w,
such that v is adjacent to the neighbours of u not belonging to T (S) and w to those belonging to T (S). Now star nodes of
T (S) are oriented towards the new tree-edge e = vw, and the same construction and arguments than above apply.

Note that the complete and detailed case by case description of the constructions involved in this proof is made in the
algorithmic Section 4. �

3.2. A split decomposition characterization of cographs

A cograph is a P4-free graph [40] (see Fig. 8). This graph family is also known as the graphs totally decomposable by the
modular decomposition: i.e. their modular decomposition tree does not contain anyM-prime node. Moreover cographs are
known to be DH graphs (Fig. 9).

Theorem 3.5 (Cograph Split Tree Characterization). A connected graph G = (V , E) is a cograph if and only if its split tree ST (G)
is its modular graph-labelled tree and is a clique–star tree.
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Fig. 9. A cograph on the right, its split tree on the left, and its cotree in the middle. The star nodes, corresponding to 0 labels in the cotree, are oriented
towards the tree-root (grey tree-edge).

Proof. Assume that G is a cograph. By Theorem 2.13, MD(G) does not contains any M-prime node, the modular graph-
labelled tree of G only contains clique and star nodes. Moreover by definition (TM , FM) is reduced, it is also the split tree
ST (G).

Assume that G is not a cograph. Then the modular graph-labelled tree contains a node u such that Gu is neither a star nor
a clique. If Gu is prime with respect to the split decomposition, we are done (since then ST (G) is not a clique–star tree). So
assume the graph Gu contains a split, then the node set of ST (G) and of the modular graph-labelled tree are not the same.
That ends the proof. �

Thanks to the construction of the modular graph-labelled tree (see Section 2.3), we can rephrase Theorem 3.5 as follows:

Corollary 3.6. A connected graph G = (V , E) is a cograph if and only if ST (G) is a clique–star tree and either contains a clique
node or a tree-edge towards which all the star nodes are oriented. Such a clique node or tree-edge will be called hereafter the
tree-root of ST (G).

An example is given in Fig. 9. For the sake of simplicity, let us denote the tree-root of the split tree ST (G) of a cograph by
the set R of nodes of T it contains: that is we set R = {u} if the R is a clique node u and R = {u, v} if the R is a tree-edge uv
with u and v being star nodes.

Observe that, to get a cograph vertex incremental characterization, we could simply test, given a cograph G, first if the
graph G + x is a DH graph using Theorem 3.4, and then if the node to which x is attached in ST (G + x) does not create a
contradiction with Corollary 3.6. This second condition amounts to test a local condition on ST (G+x), and would be enough
for algorithmic purpose to refine the main DH algorithm of Section 4 in terms of cographs as done in Section 4.3. However,
the following theorem establishes a more precise property directly on ST (G).

Theorem 3.7 (Cograph Vertex Incremental Characterization). Let G be a connected cograph and ST (G) = (T , F ) be its split tree
with tree-root R. Then G+ (x, S) is a cograph if and only if:
1. it is a distance hereditary graph (see conditions of Theorem 3.4) and
2. the subtree T (S) of T either intersects R or contains a node adjacent to a node of R.

Proof. As every star node of the split tree of a cograph is oriented towards the root, ST (G) and T (S)have a natural orientation.
This implies that condition 2 above can be rephrased as follows: if T (S) does not intersect R, then T (S) has a unique root node
which is adjacent to a node of R.
⇒ If G+ (x, S) is a cograph, then it is a DH graph. By the structure of their split tree (see Theorem 3.5), observe that every

node of the tree-root is l-accessible for every leaf l. Let us consider the three different ways ST (G) can be transformed
into ST (G+ (x, S)):
1. Vertex x has been attached to a node u of ST (G). Then the tree-root R of ST (G) is still the tree-root of ST (G+ (x, s)). By

Corollary 3.6, R either contains a clique node or two star nodes v and w oriented towards the tree-edge vw (u may
belong to R). Observe that in both cases, the nodes of R are x-accessible. By Corollary 2.5, the set S intersects the leaf
set of at least two maximal trees of T − R. Thereby R intersects the node set of T (S).

2. A node u of ST (G) is node-split into two adjacent nodes v and v′ and the tree-edge vv′ is subdivided to insert a new nodew
adjacent to x. If u does not belong to the tree-root R of ST (G), then as in the first case the tree-root remains unchanged
and R intersects the node set of T (S). Assume R = {u}. By Corollary 3.6, u is a clique node and the new nodew is a star
node, say oriented towards v. Observe that every maximal subtrees of T − u is now attached to either v or v′ which
both have degree at least 3, and that by Corollary 2.5 each of these subtree attached to v contains a leaf in S. Thereby
R belongs to the node set of T (S). So assume that R = {u, v}, which implies that u is a star node (Corollary 3.6). Again
by Corollary 2.5, T − u contains at least two maximal trees of T − uwith a leaf in S and at least one of these maximal
trees is the one containing node v. It follows that R is a subset of the node set of T (S).
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Fig. 10. A 3-leaf power graph on the right, its split tree on the left, and a root-tree of this graph in the middle.

3. A tree-edge of ST (G) is subdivided to insert a new node w′ adjacent to x. As clique nodes and star nodes alternate
everywhere in ST (G) but possibly at the tree-root R = {u, v}, the subdivided tree-edge is: either (a) the tree-edge uv
joining the vertices of the tree-root; (b) or is incident to a leaf l; or (c) incident to unique node u of the tree-root and
u is a clique node. Let us consider these three different cases:
(a) Assume the subdivided tree-edge is uv with R = {u, v}. If the tree-root does not contains a leaf, then by

Corollary 3.6 nodew′ is a clique node. It follows that the twomaximal trees of T−uv contain leaves of S, implying
that R is a subset of the node set of T (S). The tree-root of ST (G + (x, S)) is now {w′}. If the tree-root R = {u, v}
contains a leaf, say v, then T (S) either contains v or S contains two leaves in different maximal trees of T − u,
which implies that the node set of T (S) intersects R.

(b) Assume the subdivided tree-edge is wl with l a leaf. Then the tree-root of ST (G + (x, S)) is still R and the same
arguments than in case 1 above apply.

(c) Assume the subdivided tree-edge is uv with R = {u} (u is a clique node). The node w′ is a star node oriented
towards the star node v. In that case at least two maximal trees of T − v contains leaves in S and thereby v
belongs to T (S). So we are in the situation that T (S) does not intersect R but has a neighbour, namely v, in the
tree-root.

⇐ We need to show that the second condition implies that all the star nodes are oriented towards the root of ST (G+ (x, S))
(condition 2 of Theorem 3.5). This is trivially the case if no new node has been created while transforming ST (G) into
ST (G+(x, S)). This is also true if a new clique node has been created. So assume that a new star nodew has been inserted.
Either the node w arises from the subdivision of a clique node u or from the subdivision of a tree-edge. Consider the
former case. If {u} is not the tree-root R of ST (G), then the tree-root of ST (G+ (x, S)) is still R. As nodes of the tree-root
are x-accessible, the result follows. Otherwise if R = {u}, then the new tree-root of ST (G+ (x, S)) is one of the two new
clique nodes resulting from the subdivision of u. The result trivially holds. Consider now the latter case (w is inserted on
a tree-edge). This tree-edge has to contain a leaf, say l adjacent to u. If {u, l} is not the tree-root R, then as before, R is still
the tree-root of ST (G+ (x, S)) and thereby w is oriented towards R since R is x-accessible. Otherwise if R = {u, l}, then
the tree-root of ST (G+ (x, S)) is either u (if u is a clique node) or {u, w} (otherwise). It follows that in every cases all the
star nodes of ST (G+ (x, S)) are oriented towards R. �

Observe that, unlike in the vertex incremental characterization of DH graph (see Theorem 3.4), Theorem 3.7 does not
require the restriction lS| > 1. This case is indeed captured by condition 2 on T (S).

3.3. 3-leaf powers

Definition 3.8. For an integer k, a graph G = (V , E) is a k-leaf power if there is a tree T whose leaf set is V and such that
xy ∈ E if and only if the distance in T between leaves x and y is at most k, dT (x, y) ≤ k. The tree T is called root-tree of G.

The family of k-leaf power has been introduced in [34] in the context of phylogenetic tree reconstruction. Forbidden
induced subgraph characterizations are known for k ≤ 4. In [2], 3-leaf powers have been characterized as the graphs result-
ing from the substitution of vertices of a tree by cliques. This leads to the following alternative characterization (see Fig. 10).

Theorem 3.9 (3-Leaf Power Split Tree Characterization). A connected graph G = (V , E) is a 3-leaf power if and only if
1. its split tree ST (G) = (T , F ) is a clique–star tree (G is distance hereditary);
2. the set of star nodes forms a connected subtree of T ;
3. if u is a star node, then the tree-edge e such that ρu(e) is the centre of the star, is incident to a leaf or a clique node.
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Proof. We assume that G is not a clique nor a star, otherwise the statement is trivially true.

⇒ As G is a 3-leaf power there exists a root-tree T ′ whose leaf set is V . Assume first that no pair of leaves are at distance two
in T ′. For a leaf x, we denote by n(x) its unique neighbour. Clearly x and y are adjacent in G if and only if n(x) and n(y) are
adjacent in T ′. As G is connected, every node of T ′ is the neighbour of some leaf. Let us construct a graph-labelled tree
(T ′, F ′) such that Gr(T ′, F ′) = G. The graph-label Gv of each node v = n(x) is a star whose centre is ρv(xv). It is clear
that two leaves of (T ′, F ′) are adjacent in Gr(T ′, F ′) if and only if there are attached to the centre of two neighbouring
stars in T ′: i.e. Gr(T ′, F ′) = G. As no pair of leaves are at distance two, T ′ may contain some node of degree 2. Then
performing a node-join on each such node u and its non-leaf neighbour v, yields a graph-labelled tree (T , F ) which is
reduced and which only contains stars: this is the split tree ST (G).

Now assume that T ′ contains some pairs of leaves at distance 2. Such a pair of leaves defines a pair of true twins in
G. Let P be that partition of V (G) (leaf set of T ′) into maximal sets of true twins (or maximal clique modules). The split
tree of the quotient graph G/P is obtained as described above. Now the clique modules are reintroduced by performing
true twins insertions (see Fig. 6) in the split tree. Let x be a leaf of ST (G/P ) andMx be the corresponding clique module.
Then subdivide the tree-edge incident to x by a clique node of degree 1+|Mx| (see Fig. 6 for a true twins augmentation).
This yields a split tree of G having the expected properties.

⇐ Assume that ST (G) = (T , F ) satisfies conditions 1, 2 and 3. Then the root-tree T ′ whose leaf set is V (i.e. equal to the
leaf set of T ) is obtained as follows: (1) contract every tree-edge uv of T such that u is a clique node and v is a star node;
and (2) subdivide every tree-edge e = vl of T such that l is a leaf, v is a star node and ρv(e) is not the centre of the star
Gu. Let us prove the correctness of this construction.

Assume first that ST (G) only contains star nodes. Let l be a leaf and u be its neighbour. Suppose that ρu(lu) is not the
centre of the star Gu. As e = lu is a subdivided tree-edge, dT ′(l, l′) ≥ 3 with every leaf l′ ≠ l. In this case no contraction
is performed, and thereby the distances between leaves do not decrease. Observe then that the only leaf l′ such that
dT ′(l, l′) = 3 is attached to the centre of the star Gu (i.e. ρu(l′u)). It is clear that l′ is the only leaf accessible to l in ST (G),
i.e. adjacent in G. So suppose that ρu(lu) is the centre of the star Gu. As just argued, dT ′(l, l′) = 3 for every leaf l′ ≠ l
adjacent to u and l, l′ are pairwise accessible in ST (G) so adjacent in G. So consider a leaf l′ adjacent to a node v distinct
from u. Observe that if u and v are not adjacent, then dT ′(l, l′) > 3 and by condition 3 l cannot be accessible from l′.
Otherwise (u and v are adjacent nodes), if ρv(l′v) is the centre of Gv then dT ′(l, l′) = dT (l, l′) = 3 which is fine since l is
accessible from l′. If ρv(l′v) is not the centre of Gv then dT ′(l, l′) = dT (l, l′)+ 1 = 4 but then l is not accessible from l′. It
follows that l and l′ are at distance 3 is T ′ if and only if there are adjacent in G.

To conclude consider the case where ST (G) contains some clique nodes. Observe that by condition 2, a clique node
u is adjacent to at most one star node. Observe also that every pair of leaves adjacent to the same clique node are
(adjacent) twins. Now if we save only one representative leaf per clique node, we obtain a graph G′ whose split tree
ST (G′) only contains star nodes (replace every clique node by the corresponding representative leaf). We have shown
that our root-tree construction is valid for G′. By the observations above, to obtain the root-tree it suffices to add every
non-representative leaf l adjacent to the same node than its representative. Observe that this finally amount to contract
the tree-edge between clique nodes and star nodes. This conclude the proof. �

Observe that, to get a 3-leaf power vertex incremental characterization, we could simply test, given a 3-leaf power graph
G, first if the graph G+ x is a DH graph using Theorem 3.4, and then if the node to which x is attached in ST (G+ x) does not
create a contradiction with Theorem 3.9. This second condition amounts to test a local condition on ST (G + x), and would
be enough for algorithmic purpose to refine the main DH algorithm of Section 4 in terms of 3-leaf power graphs as done in
Section 4.4. However, the following theorem establishes a more precise property directly on ST (G).

Theorem 3.10 (3-Leaf Power Vertex Incremental Characterization). Let G be a connected 3-leaf power and ST (G) = (T , F ) be
its split tree. Then G+ (x, S) is a 3-leaf power if and only if

1. it is a distance hereditary graph (see conditions of Theorem 3.4);
2. if S = {y}, then either y is adjacent in T to a star node, or T has a only one node;
3. if |S| > 1, then

(a) if T (S) does not contain a partially accessible node, then the tree-edge, towards which the fully mixed star nodes are
oriented (see Theorem 3.4), is incident to a clique node or a leaf;

(b) if T (S) contains a partially accessible node u, then u is a clique node, and either S is the set of leaves adjacent to u or u is
the only node of ST (G).

Proof. We first consider the case S = {y}. Then ST (G+ (x, S)) is obtained from ST (G) by inserting on the tree-edge incident
to y a degree 3 star node u adjacent to x and whose centre is ρu(uy). Thanks to Theorem 3.9, G + (x, S) is a 3-leaf power if
and only if the neighbour of y if condition 2 is satisfied.

From now on, we assume that |S| > 1 and prove that G+ (x, S) is DH if and only if conditions 1 and 3 hold.

⇒ Let us consider the three different ways ST (G) can be transformed into ST (G+ (x, S)):
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1. Vertex x is attached to a node u of ST (G). Assume that u is a clique node. Then, by Corollary 2.5, u is a fully accessible
clique node of T (S) and T (S) does not contain any partially accessible node. It follows that every star node of T (S)
is oriented towards any tree-edge of T (S) incident to u. Consider the case u is a star node. Then by Theorem 3.9 and
since |S| > 1, the neighbour v of u, such that ρu(uv) is the centre of Gv , is a clique. It follows that v is the partially
accessible node of T (S) and S is the set of leaves adjacent to v.

2. A node u of ST (G) is node-split into two adjacent nodes v and v′ and the tree-edge vv′ is subdivided to insert a new nodew
adjacent to x. As observed in the proof of Theorem 3.4, u is partially accessible (this is a consequence of Corollary 2.5).
Assume that u is a star node. Then, by Theorem 3.9, w cannot be a clique node, since otherwise it would neighbour
two star nodes, namely v and v′. But if w is a star node, then the tree-edge e such that ρu(e) is the centre of Gu is
adjacent to a star node v ≠ u: contradicting Theorem 3.9 again. It follows that u has to be a clique node. This forces w
to be a star node. Theorem 3.9 then implies that G+ (x, S) is a 3-leaf power graph if and only if u is the unique node
of ST (G) (otherwise the set of star nodes in ST (G+ (x, S)) would not be connected).

3. A tree-edge e of ST (G) is subdivided to insert a new nodew adjacent to x. Ifw is a clique node, then by Corollary 2.5, T (S)
does not contain any partially accessible node. By Theorem 3.9, G+x is a 3-leaf power graph if and only if e is incident
to a leaf of ST (G). Assume that w is a star node with centre ρw(vw). As |S| > 1, v is not a leaf. By Corollary 2.5, v is
partially accessible. By Theorem 3.9, G + x is a 3-leaf power graph if and only if v is a clique node. Moreover in that
case, observe that S is precisely the set of leaves of T adjacent to v.

⇐ We just observe that if conditions (3.a) and (3.b) hold, then the construction of ST (G+ (x, S)) described in the proof of
Theorem 3.4 yields a split tree that satisfies Theorem 3.9. We describe the two cases more precisely. Assume condition
(3.a) holds. Let e be the tree-edge of T (S) towards which the fully mixed star nodes are oriented. Then either e is incident
to a leaf, or e is incident to a star and a clique. In both, cases, the construction of ST (G + (x, S)) from ST (G) described
in the proof of Theorem 3.4 shows that ST (G + (x, S)) satisfies the conditions of Theorem 3.9. Assume now that T (S)
contains a partially accessible node and condition (3.b) holds. Again from the proof of Theorem 3.4, we know that to get
ST (G+ (x, S)) from ST (G), the partially accessible node u is node-split. Since u is a clique node, it is then straightforward
to check that condition (3.b) implies that ST (G+ (x, S)) satisfies the conditions of Theorem 3.9. �

4. Vertex-only fully dynamic recognition algorithms

The main result presented in this section is an optimal vertex-only fully dynamic algorithm that maintains the split tree
representation of a DH graph. For both insertion and deletion queries, the split tree can be updated in time O(d(x)), where
d(x) is the degree of the vertex to be inserted or deleted. In the case of an insertion, the algorithm can check whether the
resulting graph is DH or not. As corollaries, we obtain linear time recognition and isomorphism algorithms for DH graphs.
We also give a short overview of how this algorithm can be specialized for the cases of cographs and of 3-leaf powers.

Let us first describe the data structure we use to implement the split tree of the input graph.

Data structure. The following data structure is used to encode the clique–star tree ST (G) = (T , F ) of the given connected
DH graph G:

1. a (rooted) representation of the tree T . The root of T is chosen arbitrarily and is only required for the seek of computational
efficiency;

2. as the graphs of F are cliques or stars, each node of T only needs a clique–star mark distinguishing the type of each node,
the degree of the node and in the case of a star a centre mark to distinguish its centre from the other marker vertices.

Such a data structure is clearly an O(n) space representation of any DH graph on n vertices.

4.1. Vertex insertion in DH graphs

The insertion algorithm works in three steps. Given a DH graph G represented by its split tree ST (G) and a new vertex x
together with a set of vertices S of G: (1) we first compute the subtree T (S); (2) then we check whether the conditions of
Theorem 3.4 are satisfied; and finally (3) if the augmented graph G + x turns out to be DH, we update the split tree data
structure (otherwise the algorithm stops).

Computing the smallest subtree spanning a set of leaves.
Given a set S of leaves of a tree T , we need to identify the smallest subtree T (S) spanning S, and to store the degrees of

its nodes. This problem is easy to solve on rooted trees by a bottom-up marking process in time O(|T (S)|) as follows:

1. Mark each leaf of S. Along the algorithm, a marked node is active if it is not the root and its father is not marked.
2. Each active node marks its father if: (1) the root is not marked and there are at least two active vertices, or (2) the root is

marked and there is at least one active node.
3. While the root of the subtree T ′ induced by the marked nodes is a leaf of T ′ but does not belong to S, then remove this

(root) node from T ′, let its child be the new root of T ′ and check again. Eventually return T (S) = T ′.
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By Lemma 2.11, if the augmented graph G+ x is DH, the size of T (S) (its number of nodes) is at most 2.|S|. To prevent a
non-linear complexity in the case G + x is not DH, while computing T (S), we need to count the number of marked nodes.
More precisely after step 2, the number of marked nodes is at most 2.|T (S)| (since the number of deleted nodes in step
3 cannot exceed the number of marked nodes). Hence if the graph is DH, this number of marked nodes is at most 4.|S|.
Whenever more than 4.|S| nodes have been marked during step 2, the algorithm stops and claims that the graph G + x is
not DH. In every case, it is easy to check that the above algorithm has O(|S|) running time. Its correctness is straightforward.
Testing conditions of Theorem 3.4.

The first two conditions of Theorem 3.4 are fairly easy to check by following Definition 3.3: a node u is fully accessible if
its degrees in T (S) and T are the same; u is singly accessible if it is a star, if it has degree 2 in T (S) and if the neighbour v of
u, such that ρu(uv) is the star centre, belongs to T (S); and u is partially accessible otherwise (such a node has to be unique if
it exists). These tests cost O(|T (S)|).

We can now assume that the first two conditions of Theorem 3.4 are fulfilled. Since the case |S| = 1 is trivial, we also
assume that |S| > 1.

We define local orientations on nodes of a tree as the choice, for each node u, of a node f (u) such that either f (u) = u
or f (u) is a neighbour of u. Local orientations are compatible if (1) f (u) = u implies f (v) = u for every neighbour v of u,
and (2) f (u) = v implies f (w) = u for every neighbour w ≠ v of u. An easy exercise is to see that if local orientations
are compatible then exactly one of the two following properties holds: either there exists a unique node u with f (u) = u,
in which case u is called node-root, or there exists a unique tree-edge uv with f (u) = v and f (v) = u, in which case uv is
called tree-edge root.

Testing the third condition of Theorem 3.4 consists of building, if possible, compatible local orientations in the subtree
T (S):
1. Let u be a leaf of T (S). Then f (u) is the unique neighbour of u.
2. Let u be a star node of T (S). If u is partially accessible, then f (u) = u. If u is singly accessible, then f (u) is the unique

neighbour v of u belonging to T (S) such that ρu(uv) is a degree-1 vertex of the star. If u is fully accessible, then f (u) is
the neighbour v of u such that ρu(uv) is the centre of the star.

3. Let u be a clique node of T (S). If u is partially accessible, then f (u) = u. Otherwise, u is fully accessible and its neighbours
are leaves or star nodes. If f (v) = u for every neighbour v of u then f (u) = u. If f (v) = u for every neighbour v of u but
one, say w, then f (u) = w. Otherwise u is an obstruction.

The third condition of Theorem 3.4 is satisfied if and only if (1) there is no obstruction and (2) local orientations of T (S)
are compatible. This test can be performed in time O(|T (S)|) by a search of T (S). Hence the conditions of Theorem 3.4 can
be tested in O(|T (S)|) time. Moreover if the test is satisfied, the search of T (S) locates the node-root or the tree-edge root.
Updating the split tree.

We now assume that G + (x, S) is DH (i.e. conditions of Theorem 3.4 are satisfied). So by Theorem 3.4 the split tree has
either a unique node-root or a unique tree-edge root. To update the split tree, we may subdivide an insertion tree-edge into
two new tree-edges. Notice that, since we maintain an (artificial) orientation of the tree, this subdivision can be done in
O(1). There are three cases to consider (see Fig. 12), after a possible single node-split preprocess (see Fig. 11).
0. Single node-split preprocess: If there is a node-root u being partially accessible, then, depending on degree conditions on

u, a preliminary update of T consisting of a node-split of the node u is required. Let U , resp. A, be the set of tree-edges
incident to u in T , resp. in T (S).
(a) If u is a clique node with |U \ A| ≥ 2, then u is node-split. Two new adjacent clique nodes v and w are created in T .

The marker vertices of v (resp. w) correspond to A, resp. U \ A, except one which corresponds to vw. In this case, v is
now the (partially accessible) node-root.

(b) If u is a star node, the centre of which is mapped to the tree-edge e, and |(U \ A) \ (e)| ≥ 1, then u is node-split and
replaced by two adjacent star nodes v and w. Then the extremities of the star Gv correspond to A \ {e} and its centre
to vw (we have |A \ {e}| > 1 since u is not singly accessible), likewise the extremities of the star Gw correspond to
(U \ A) ∪ {vw} and its centre to e.
i. If e ∉ A, then the node v becomes the (partially accessible) node-root.
ii. If e ∈ A, then the tree-edge vw is now the tree-edge root.

1. The root of T (S) is a partially accessible node v, or S is reduced to a unique leaf v. Let w be its neighbour in T that does
not belong to T (S). Then the insertion tree-edge is e = vw, and ST (G + (x, S)) is obtained by subdividing vw into two
tree-edge vr and rw, where r a degree 3 star node whose centre is ρw(vr) and to which x is adjacent. Finally if w is a star
with centre ρv(wr), we proceed a node-join operation on the tree-edge wr .

2. The root of T (S) is a node v which is not partially accessible. By the definition of the local orientation f , the node v is a
clique node, and ST (G+ (x, S)) is obtained by adding the new leaf x adjacent to v whose degree thereby increases by one.

3. The root of T (S) is a tree-edge vw. Then ST (G+ (x, S)) is obtained by subdividing vw with a clique node r of degree 3 and
making the leaf x adjacent to r .

Theorem 4.1 (Vertex Insertion). Let G + (x, S) be a graph such that G is a connected distance hereditary graph. Given the data
structure of the split tree ST (G), testing whether G + (x, S) is distance hereditary and if so computing the data structure of
ST (G+ (x, S)) can be done in O(|S|) time.
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Fig. 11. Vertex-insertion preprocessing step: a node-split on the node-root u is required to separate the set A of tree-edges (i.e. those incident to u and
belonging to T (S), drawn with an arrow in the figure) from the others.

Fig. 12. The three different cases for the vertex insertion: (1) the root of T (S) is a partially accessible node v; (2) the root of T (S) is a node v which is not
partially accessible; and (3) the root of T (S) is a tree-edge vw. The modified split tree is obtained by inserting dashed node or tree-edges.

Proof. The correctness follows from the discussion above and the proof of Theorem 3.4.
Concerning the complexity issues, every tree-modification operation can be done inO(1) time, except the splitting in case

0 which requires O(|T (S)|) time (by deleting A from u to get w, and adding A to a new empty node v). Any other operation
time to maintain the data structure of the split tree (root, degrees...) requires O(1) time. Then, the complexity for the whole
insertion algorithm derives from previous steps and the fact that O(|T (S)|) = O(|S|) if the algorithm has passed the T (S)
computation step. �

Let us remark that our vertex-insertion algorithmyields a linear time recognition algorithmof (static) DH graphs, thereby
achieving the best known bound but also simplifying the previous non-incremental ones [24,17,6]. It also yields a linear time
isomorphism algorithm, thereby achieving the best known bound again with a simpler setting than in [33].

Corollary 4.2 (Static Recognition). The vertex-insertion routine enables to recognize distance hereditary graphs in linear time.
Proof. As the insertion algorithmworks only on connected graphs, we have to proceed the vertices in an ordering x1, . . . , xn
such that, for every 1 ≤ i ≤ n, G[{x1, . . . , xi}] is connected. Any search (e.g. BFS) computes such an ordering in linear time.
As the global complexity cost is linear in the sum of the degrees, linear time follows. �

Corollary 4.3 (Isomorphism). The vertex-insertion routine enables to test distance hereditary graph isomorphism in linear time.
Proof. To test isomorphism between two DH graphs, it suffices to test isomorphism between the two corresponding split
trees. The split tree of a DH graph can be constructed in linear time by our recognition algorithm and has size linear
in the number of vertices of the graph (Lemma 2.11). Thereby any linear time tree isomorphism algorithm can be used
(e.g. [1]). �

4.2. Vertex deletion in DH graphs

Removing a vertex x from a DH graph G always yields a DH graph G− x. Let ST (G) be the split tree of G. Updating the data
structure of the split tree can be done as follows.
1. Remove the leaf x and update the degree of its neighbour v.
2. If v now has degree 2, then remove v and add a tree-edge between its neighbours u and w. If the resulting clique–star

tree is not reduced, proceed a node-join on the tree-edge uw.
3. If v is a star node whose centre neighbour was x, then G− x is no longer connected, and the split trees of each connected

component are the components of T − {v, x}.

Lemma 4.4 (Vertex Deletion). Let G be a connected distance hereditary graph and x be a degree d vertex of G. Given the data
structure of split tree ST (G), testing whether G−x is a connected distance hereditary graph and if so computing the data structure
of ST (G− x) can be done in O(d) time.
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Proof. Every operation, except the node-join, can be achieved in O(1) time. The complexity of the node-join on the tree-
edge uw is min(d(u), d(w)), where d(u), d(w) are respectively the degree of node u and node w. Since at least one of
these nodes is fully accessible, this minimum degree is smaller than d, the degree of x. Hence this node-join operation
costs O(d). �

To summarize the results of vertex dynamic DH graphs, with Theorem 4.1 and Lemma 4.4, we have proved that:

Theorem 4.5. There exists a vertex fully dynamic recognition algorithm for connected distance hereditary graphs, maintaining
the split tree, with complexity O(d) per vertex-insertion or deletion operation involving d edges.

4.3. Vertex modifications in cographs

To check whether the augmented graph G + (x, S) is a cograph, our vertex-insertion algorithm for DH could be used.
According to Theorem 3.7, we just need an extra test to verify that the tree-root has a node in the subtree T (S) or is
neighbouring a node of T (S). Notice that as the original graph G is a cograph, the star nodes define a natural orientation
which can be used to compute T (S). Let us also remark that, as a consequence of Theorem 3.7, the set of singly accessible
nodes (which are stars) has to belong to a path from the tree-root of ST (G) to somenode u. It follows that to test condition 3 of
Theorem 3.4, the local orientations can be avoided. This path property for the singly accessible nodeswas already noticed (in
other terms) in the characterization proposed in [12]. Finally, we need an extra work to update the tree-root as described in
the proof of Theorem 3.5. This can also be done in constant time. It follows that the resulting complexity is O(d) by insertion
as in the incremental recognition algorithm of Corneil et al. [12] (which is based on the modular decomposition tree).

As cographs are hereditary graphs, the vertex deletion always yields a cograph. Notice also that removing a vertex does
not affect the orientation of the remaining star nodes in the split tree. It follows that our vertex-deletion algorithm for DH
graph can be used as well for the vertex deletion of cographs.

Theorem 4.6. There exists a vertex fully dynamic recognition algorithm for connected cographs, maintaining the split tree, with
complexity O(d) per vertex-insertion or vertex-deletion operation involving d edges.

4.4. Vertex modifications in 3-leaf powers

Again the DH vertex-insertion algorithm can be easily specialized to work on 3-leaf powers. Thanks to Theorem 3.10,
insertion of a pendant vertex x neighbouring y is restricted to the case where a leaf y is adjacent to a star node or the split
tree has a unique node. This can be checked in O(1) time. In the other cases, we just need to test whether the subtree T (S)
contains or not a partially accessible node. This only requires a search of T (S) whose size is O(|S|). Concerning the deletion
algorithm, as 3-leaf powers are hereditary graphs, we just apply the DH vertex-deletion algorithm.

Theorem 4.7. There exists a vertex fully dynamic recognition algorithm for connected 3-leaf powers, maintaining the split tree,
with complexity O(d) per vertex-insertion or vertex-deletion operation involving d edges.

Notice that since the family of 3-leaf power is hereditary, this vertex incremental recognition algorithm also applies to
static graph. The time complexity is linear as for the recognition algorithm proposed in [2]. Moreover our algorithm can be
easily adapted to output the root-tree when the input graph is a 3-leaf power.

5. Edge modifications: characterizations and algorithms

In this section we show that the split tree representation is also the right tool to deal with edge modifications in totally
decomposable graphs. Indeed, based on the forbidden induced subgraph characterizations of the three graph families we
have considered so far (DH graphs, cographs and 3-leaf powers), we identify necessary and sufficient conditions under
which given a graph G and an edge e, themodified graph G+e (or G−e) belongs to the same family than G. Using the graph-
labelled tree representation, these conditions consist in checking if a given path in the split tree belongs to a small finite set of
configurations. These simple characterizations yield to simple constant time edge fully dynamic algorithms. Let us mention
that such algorithmic resultswere already known for cographs [37] andDHgraphs [41]. For cographs, the edge fully dynamic
algorithm in [37] relies on a modular decomposition based characterization which, again, we are able to transpose in the
split decomposition settings, and which are derived as a particular case of the DH edge-modification algorithm. Concerning
the DH graphs, the constant time algorithm of [41] is way more complicated than the one we propose here. It relies on a
tricky analysis on the BFS layering structure [24] of DH graphs and up to our knowledge no simple characterization could
be identified from that work. No result of this flavour was known for 3-leaf powers.

5.1. Edge modification in distance hereditary graphs

This subsection states our results on edge modifications in DH graphs. The combinatorial characterization Theorem 5.1
directly implies the algorithm of Corollary 5.2 and is proved in the next subsection.

Let G be a connected DH graph and ST (G) = (T , F ) be its split tree. If x and y are two vertices of G, we denote P(x, y)
the graph-labelled tree formed by the path in T between the leaf x and the leaf y, with nodes labelled the same way as in
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Fig. 13. Constant time dynamic algorithm for edge modification in DH graphs (Corollary 5.2).

ST (G). As ST (G) is a clique–star tree, P(x, y) naturally defines a word W (x, y) whose letters identify the type of the graphs
labelling the nodes in P(x, y). A alphabet of four symbols A = {K , S, Sx, Sy} is enough to describeW (x, y):
• the letter K stands for the clique nodes;
• the letter S stands for the star nodes v, the centre ρv(e) of which is mapped to the tree-edge e that does not belong to

P(x, y); and
• the letter Sx (resp. Sy) stands for the star nodes v, the centre ρv(e) of which is mapped to the tree-edge e that belongs to

the subpath of P(x, y)− v containing x (resp. y).

Observe that xy ∈ E(G) if and only if W (x, y) is S-free (i.e. does not contain the letter S). When describing words, letters
in brackets can be deleted: e.g. K(S)K stands for the words KK and KSK .

Theorem 5.1. Let G be a connected DH graph and ST (G) = (T , F ) be its split tree. Let x and y be two vertices of G and W (x, y)
be the word labelling the path P(x, y) between x and y in T . Then
1. If xy ∉ E, then G+ xy is distance hereditary if and only if W (x, y) is one of the following words:

(Sx)SS(Sy) (Sx)SK(Sy) (Sx)KS(Sy) (Sx)S(Sy)
2. If xy ∉ E, then G− xy is distance hereditary if and only if W (x, y) is one of the following words:

(Sx)SySx(Sy) (Sx)SyK(Sy) (Sx)KSx(Sy) (Sx)K(Sy) (Sx)(Sy)

Moreover if W (x, y) = (Sx)(Sy), then G− xy is no longer connected.

Corollary 5.2. The following algorithm tests and updates the data structure of the split tree for the insertion or deletion of an edge
xy in a (connected) distance hereditary graph G in constant time.
1. Test ifW (x, y) has length at most 4 and satisfies conditions of Theorem 5.1.
2. Update the split tree of G. Nodes of letters in brackets are called extreme.

(a) Node-split every non-extreme node of W (x, y) that is not ternary so that in the resulting clique–star tree, all the
non-extreme node ofW (x, y) are ternary.

(b) Replace the non-extreme nodes by ternary nodes according to the following table. If W (x, y) contains two non-
extreme nodes, say u and v, then the neighbour u′ of u (resp. v′ of v), that does not belong to W (x, y), becomes
adjacent to v (resp. u). See Fig. 13. Extreme nodes are left unchanged.

edge insertion−→
←− edge deletion

(Sx)SS(Sy) (Sx)SySx(Sy)
(Sx)SK(Sy) (Sx)SyK(Sy)
(Sx)KS(Sy) (Sx)KSx(Sy)
(Sx)S(Sy) (Sx)K(Sy)

(c) If necessary, proceed (atmost two) node-join operations involving the nodes that have been changed to get a reduced
graph-labelled tree.



726 E. Gioan, C. Paul / Discrete Applied Mathematics 160 (2012) 708–733

Fig. 14. A DH graph (and cograph) such that removing any edge incident to the vertex x provides a non-DH graph: the length of the path from x to any
other leaf is greater than 5.

Fig. 15. The gem, the house, and the domino are together with the cycles Ck (k ≥ 5), the forbidden induced subgraphs for DH graphs.

Proof. The correctness of the algorithm is a consequence of Theorem 5.1 and the fact that the split tree transformations are
safe (see Fig. 13). Let us turn to the complexity analysis. We assume (as we did in Section 4) that an artificial root of the split
tree is maintained (remember that the graph and the split tree are connected). Step 1 can be done easily in constant time,
by searching the split tree in parallel from x and y towards the root (if the least common ancestor of x and y is found after 4
steps or more, then the length of the path P(x, y) is larger than 4). Step 2 also requires constant time. There are at most two
node-split operations and two node-join operations respectively at steps (a) and (c), each of which is constant time since it
involves a ternary node. And the transformation at step (b) is obviously constant time. �

Remark 5.3. From Theorem 5.1, we can easily build an example of a DH graph (and cograph) having a vertex such that
removing any edge incident to this vertex provides a non-DH graph. It is depicted on Fig. 14. This example shows that an
edge-only dynamic recognition algorithm for DH graphs cannot be used to obtain a vertex-only one.

5.2. Proof of Theorem 5.1

As mentioned above, our edge-modification characterization of DH graphs relies on the forbidden induced subgraph
characterization: a graph is distance hereditary if and only if it does not contain a cycle of length at least 5 (Ck for k ≥ 5), a
gem, a house, nor a domino (see Fig. 15) as induced subgraph [4].

We first need to introduce some notations and to state some basic properties and technical lemmas. We call factor, in a
word W , a set of consecutive letters of W . We call S-subword a word obtained from W by deleting some letters different
from S. As for the clique–star trees, we say that a word is reduced if it does not contain the following factors: KK , SySy, SxSx,
SyS and SSx. With a wordW = w1w2 . . . wr on A, one can associate a clique–star tree PW whose underlying tree is a path of
ternary nodes with hanging leaves (i.e. PW is a caterpillar). Say that the first and last extreme nodes respectively have leaves
x and y, chosen to be the extreme leaves ofW . Then, the nodes of PW are labelled by graphs (with three vertices) accordingly
to the letters of W w.r.t. x and y, just the same way as P(x, y) corresponds to W (x, y), as defined in the beginning of this
section. We will denote GW the DH graph defined as the accessibility graph of the clique–star tree PW . Let W be a word on
A with extreme leaves x, y. Assuming xy ∉ E(GW ), the word W is called forbidden for edge insertion if GW + xy is not a DH
graph; otherwiseW is safe for edge insertion. Similarly, assuming xy ∈ E(GW ), thewordW is called forbidden for edge deletion
if GW − xy is not a DH graph; otherwise W is safe for edge deletion. The proof of Theorem 5.1 relies on a characterization of
the safe words (for insertion and deletion) by forbidden excluded subwords.

Lemma 5.4. Let x and y be two vertices of a distance hereditary graph G. Then there exists a graph-labelled tree of G with a
node u neighbouring leaves x and y such that Gu is isomorphic to GW (x,y). Hence, in particular, GW (x,y) is isomorphic to an induced
subgraph of G.
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Fig. 16. Proof of Theorem 5.1, insertion case. Split trees of graphs H − xy for H , a DH forbidden induced subgraph. Only useful graphs, i.e. DH ones, are
represented. In the table of insertion forbidden subwords, in comparison, repetitions are deleted, and symmetric words are added.

Proof. By definition, the graph-labelled tree PW (x,y) is isomorphic to the graph-labelled tree obtained from P(x, y) by
substituting all nodes in P(x, y) with ternary nodes corresponding to the same letters. Hence, node splitting in ST (G) all
nodes belonging to P(x, y), in such a way that the path from x to y is preserved in the tree structure and is now labelled by
ternary nodes, yields a subtree isomorphic to PW (x,y). Joining all the nodes of this subtree provides a node, adjacent to leaves
x and y, and whose label is isomorphic to GW (x,y). It follows from Corollary 2.6 that GW (x,y) is an induced subgraph of G. �

Lemma 5.5. Let x and y be two vertices of a distance hereditary graph G = (V , E). If xy ∉ E, the graph G + xy is distance
hereditary if and only if the word W (x, y) is not forbidden for edge insertion. If xy ∈ E, the graph G− xy is distance hereditary if
and only if the word W (x, y) is not forbidden for edge deletion.

Proof. Assume xy ∉ E. By definition, the graph GW (x,y) + xy is DH if and only if W (x, y) is not forbidden for edge insertion.
We prove that G + xy is DH if and only if GW (x,y) + xy is DH. By Lemma 5.4, there exists a graph-labelled tree (T , F ) of G
containing a node u such that Gu is isomorphic to GW (x,y). As leaves x and y are adjacent to the node u of T , replacing Gu with
GW (x,y) + xy yields a graph-labelled tree whose accessibility graph is G + xy. As a graph G is DH if and only if all labels in a
graph-labelled tree of G are DH, the result obviously follows. The proof for edge deletion is similar. �

Lemma 5.6. Let x and y be two vertices of a distance hereditary graph G. Every connected induced subgraph H of GW (x,y) with
x, y ∈ V (H) is isomorphic to some graph GWH where WH is a S-subword of W (x, y). Conversely, every such graph GWH is
isomorphic to some such connected induced subgraph H.

Proof. Let W = W (x, y) = w1 . . . wr , and let {x = z0, z1, . . . , zr , y = zr+1} be the set of vertices of GW , such that the
ordering z1, . . . , zr corresponds to the ordering of leaves encountered from x to y in the caterpillar PW . Let H be an induced
subgraph of GW such that V (H) = {x, zi1 . . . zik , y} with i1 < · · · < ik. Since PW is a caterpillar, H is connected if and only
if for every bipartition (A, B) of V (H), such that A = {zi ∈ V (H) | i ≤ j < r + 1} and B = {zi ∈ V (H) | 0 < j < i} for
some j, H contains an edge between some vertex of A and some vertex of B. By the definition of accessibility, such an edge
exists if and only if none of the letters wj of W such that zj ∉ V (H) is a S. It follows that H is connected if and only if the
word WH = wi1wi2 . . . wik is a S-subword of W . Finally, as an edge exists between two vertices of GW [V (H)] if and only if
the corresponding letters inW can be joined by a sequence of letters in {K , Sx, Sy}, we have that GW [V (H)] is isomorphic to
GWH . Also, the converse is straightforward. �

Let us consider the DH graphs obtained by removing, resp. adding, an edge xy to one of the DH forbidden induced
subgraphs H (cycles, gem, house or domino). It turns out that the split tree of each one is a caterpillar with ternary nodes
(see Fig. 16, resp. Fig. 17). Hence, they are determined by their associated words denotedWH−xy(x, y), resp. WH+xy(x, y).

Lemma 5.7. AwordW with extreme leaves x, y is forbidden for edge insertion, resp. edge deletion, if and only if it has a S-subword
of type WH−xy(x, y), resp. WH+xy(x, y), for H a distance hereditary forbidden induced subgraph.

Proof. We prove the statement for edge insertion. Edge-deletion case is similar. By definition, a word W , whose extreme
leaves are x and y, is forbidden for edge insertion if and only if GW + xy is not DH, i.e. GW + xy contains one of the DH
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Fig. 17. Proof of Theorem 5.1, deletion case. Split trees of graphs H + xy for H , a DH forbidden induced subgraph. Only useful graphs, i.e. DH ones, are
represented. In the table of deletion forbidden subwords, in comparison, repetitions are deleted, and symmetric words are added.

forbidden induced subgraphs, say H , which also contains vertices x and y (since GW is DH). Now by Lemma 5.6, H − xy is a
connected induced subgraph of GW with vertices x and y if and only if H − xy = GW ′ for some S-subwordW ′ ofW , that is if
and only if the wordW ′ = WH−xy(x, y) defined by the caterpillar split tree of H − xy is a S-subword ofW . �

For each DH forbidden induced subgraph H such that H − xy (resp. H + xy) is DH, we obtain a list of (edge-)insertion
forbidden subwords, resp. (edge-)deletion forbidden subwords, of type WH−xy(x, y), resp. WH+xy(x, y). They are given by the
following tables.

Subgraphs Ck (k ≤ 5) Gem House Domino
SKSx SSyR

Insertion S . . . S SyKS SySxS SSySxS
Forbidden with KSxS KSS SySxSS
Subwords k ≥ 3 S’s SSyK SSK SSSySx

KSK SKS

Subgraphs Gem House Domino
Deletion KSyK KSySx
Forbidden KSxK SySxK SySxSySx
Subwords SyKSx

Proof of Theorem 5.1. By Lemmas 5.5 and 5.7, it remains to show that no S-subword ofW (x, y) belongs to the list of edge-
insertion (resp. edge-deletion) forbidden subwords if and only if W (x, y) is one of words described in condition 1 (resp.
condition 2) of the theorem. Observe that the words of conditions 1 and 2 do not contain any forbidden words. Let us prove
the converse.

1. Assume that no S-subword ofW (x, y) belongs to the list of forbidden subwords for edge insertion.
Notice that W (x, y) contains at most two S’s otherwise it would contain a forbidden subwords corresponding to the

cycles Ck, k ≥ 5.
First consider the case W (x, y) contains two S’s. By the KSS, SSK , SKS House’s forbidden subwords, W (x, y) has no K

letter. By the Domino’s forbidden subwords W (x, y) is of the form (Sx)SS(Sy). More precisely, as W (x, y) is reduced, it
does not contain the factors SxSx or SySy and if a factor with no S contains a Sx (resp. a Sy), then Sx (resp. Sy) has to be
the first (resp. last) letter of that factor. It follows that W (x, y) is of the form (Sx)(Sy)S(Sx)(Sy)S(Sx)(Sy). But again since
W (x, y) is reduced, it does not contain the factors SyS or SSx. Thereby W (x, y) is of the form (Sx)SS(Sy).

Let us now consider the case W (x, y) contains only one S. Hence W (x, y) is of the form wSw′ where w and w′ are
reduced words on {K , Sy, Sx}. Then, by the SSySx, SySxS House’s forbidden subwords, SySx is not a S-subword of w and
w′. By the SSyK , SyKS Gem’s forbidden subword, KSx is not a S-subword of w and w′ neither. It follows that w and w′

can only be the words (Sx)(K)(Sy). More precisely if w or w′ contains a Sx (resp. Sy), then Sx (resp. Sy) has to be the first
(resp. last) letter. Moreover by the KSK Gem’s forbidden subword, at most one word among w and w′ contains a K letter.
Finally, since W (x, y) is reduced, it does not contain SyS or SSx as factors. Thereby W (x, y) is of the form (Sx)(K)S(Sy) or
(Sx)S(K)(Sy).

2. Assume that no S-subwordW (x, y) belongs to the list of forbidden subwords for edge deletion.
FirstW (x, y) contains at most one letter K . Otherwise, since it is reduced and contains no factor KK , it would contain

a KSyK or KSxK Gem’s excluded subword.
Assume that W (x, y) contains one letter K . Hence W (x, y) is of the form xKx′ where x and x′ are reduced words on

{Sy, Sx}. Then, by the KSySx, SySxK House’s excluded subwords, x and x′ must be of the form (Sx)(Sy). Precisely, if x or x′
contains a Sx, resp. Sy, then Sx, resp. Sy, must be the first letter, resp. last. Moreover, by the SyKSx Gem’s excluded subword,
if x contains a Sy, resp. x′ contains a Sx, then x′ does not contain a Sx letter, resp. x does not contain a Sy. HenceW (x, y) is
of the form (Sx)(Sy)K(Sy) or (Sx)K(Sx)(Sy).
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Assume W (x, y) does not contains the letter K . Then, by the SySxSySx Domino’s excluded subword, W (x, y) must be
of the form (Sx)(Sy)(Sx)(Sy), where any letter in brackets can be deleted if it gives a reduced word, that is of the form
(Sx)SySx(Sy) or (Sx)(Sy). �

5.3. Edge modification in cographs

As already mentioned, cographs are P4-free graphs (see Fig. 8). The split tree of a P4 on vertices {x, y, a, b} is formed by
two adjacent star nodes, hence it is associated with the word W = SS, SxSy, SxS or SSy depending on which leaves x and
y correspond to. Adapting Theorem 5.1 and Corollary 5.2 leads to a similar characterization and a similar constant time
algorithm, equivalent to the one given in [37] in terms of cotrees.

The characterization and algorithm for connected cographs are obtained simply by replacing, in Theorem 5.1 and
Corollary 5.2, the list of possible words W (x, y) and respective transformations of the split tree, by the ones given in the
following table.

edge insertion−→
←− edge deletion
SK SyK
KS KSx
S K

Using the transformation linking the split decomposition to the modular decomposition, one can check that the above
words correspond to the cotree configurations identified in [37] that allow edge insertion or edge deletion in a cograph.

Theorem 5.8. There exists an edge-modification fully dynamic recognition algorithm for connected cographs, maintaining the
split tree, with complexity O(1) per edge insertion or edge deletion.

Proof. Let G be a cograph and x, y be two vertices of G. Since a cograph is DH, the necessary conditions of Theorem 5.1 apply
to G, that is: W (x, y) belongs to the lists of words provided by Theorem 5.1. Moreover the word W (x, y) cannot contain
SS, SxS, SSy or SxSy as a S-subword (otherwise, by Lemma 2.4, a P4 would exist in G, which is a cograph: contradiction). It is
straightforward to check that the only words satisfying these properties in the lists given in Theorem 5.1 are those given in
the actual theorem, namely:

1. if xy ∉ E and G+ xy is a cograph, thenW (x, y) is either S, SK or KS;
2. if xy ∈ E and G− xy is a cograph, thenW (x, y) is either K , SyK or KSx.

The transformations of the edge-modification algorithm of cograph (see the above table) are special cases of the ones
described and analysed in Corollary 5.2. So the time complexity follows. It remains to check that the transformations of the
split tree, described in the above table, do not create a P4 in the edge-modified graph.

• Assume thatW (x, y) = SK and that G+ xy has an induced P4 (the caseW (x, y) = KS is symmetric). Let {a, b, x, y} be the
vertices of that P4. As the split tree of G is partitioned into the pathW (x, y) and two subtrees respectively attached to the
S node (resp. K node) of P(x, y) and disjoint from P(x, y), the vertices a and b cannot be leaves of the same subtree. Let Ta
be the subtree containing the leaf a and Tb be the subtree containing the leaf b. Let us note that since W (x, y) = SK , the
three vertices y, a and b induce a clique and none of its edges is modified in G+ xy, contradicting the fact that {a, b, x, y}
induces a P4 in G+ xy.
• Assume that W (x, y) = SyK and that G − xy has an induced P4 (the case W (x, y) = KSx is symmetric). As before let
{a, b, x, y} be the vertices of that P4 and let Ta (resp. Tb) be the maximal tree of ST (G) − W (x, y) containing the leaf a
(resp. b). This again implies that {a, b, y} induces a clique that is not modified by the removal of xy, contradicting the fact
that {a, b, x, y} induces a P4 in G− xy.
• Assume W (x, y) = S and thus xy ∉ E (resp. W (x, y) = K and thus xy ∈ E), then x and y are false (resp. true) twins in G

(xa is an edge if and only if ya is an edge). This remains unchanged by the insertion (resp. deletion) of xy: there is no P4
in G+ xy (resp. G− xy) containing x and y: G+ xy (resp. G− xy) is a cograph. �

5.4. Edge modification in 3-leaf powers

As 3-leaf power are DH, the edge insertion must satisfy the properties of the edge insertion in DH graph. As a corollary
of Theorem 3.9, the split tree of a 3-leaf power graph does not contain a path of three nodes labelled successively by a star,
a clique, and a star. Hence, the words SKSx, SyKS, SxKSx, SyKSy and SKS, have to be deleted from the list of Theorem 5.1. This
simplification turns out to be not sufficient, conditions on the degrees and on adjacent nodes have to be added.

The characterization and algorithm for connected 3-leaf power graphs are obtained by:

1. replacing, in Theorem 5.1 and Corollary 5.2, the list of possible wordsW (x, y) and respective transformations of the split
tree, by the ones given in the following table.
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edge insertion−→
←− edge deletion
(Sx)SK (Sx)SyK
KS(Sy) KSx(Sy)
(Sx)S (Sx)K
S(Sy) K(Sy)

2. adding supplementary conditions on the safe words:
(a) If W (x, y) ∈ {(Sx)SK , (Sx)SyK , KS(Sy), KSx(Sy)}, then the letter corresponding to a star and which is not in brackets

must come from a ternary star node u of ST (G) such that the neighbour of u not in P(x, y) is either a clique or a leaf.
(b) If W (x, y) ∈ {SxS, SSy}, then the node u corresponding to letter S must come from a ternary star node of ST (G) such

that the neighbour of u not in P(x, y) is either a clique or a leaf.
(c) If W (x, y) = K , then the corresponding clique node u is either ternary and adjacent to a star node which is not

oriented towards u, or is not ternary, but the unique node of ST (G).

Theorem 5.9. There exists an edge-modification fully dynamic recognition algorithm for connected 3-leaf power graphs,
maintaining the split tree, with complexity O(1) per edge insertion or edge deletion.

Proof. Since a 3-leaf power graph is DH, the necessary conditions of Theorem 5.1 remain necessary for 3-leaf power graphs,
that is:W (x, y) is in the list of words provided by Theorem 5.1. We recall that, by Theorem 3.9, the split tree of a DH graph is
the split tree of a 3-leaf graph if and only if the set of star nodes form a connected subtree and every star is oriented towards
a clique or a leaf. Hence, the wordW (x, y) cannot contain a letter K between two letters corresponding to stars S, Sx, or Sy. It
is straightforward to check that the only words satisfying these properties in the lists given in Theorem 5.1 are those given
in the above table plus the associated words (Sx)SS(Sy) and (Sx)SySx(Sy) (which are obtained from each other by respectively
the insertion of xy and the deletion of xy). These latter two words cannot be considered in the list for 3-leaf power graphs,
since, in (Sx)SySx(Sy), two star nodes are oriented towards a star, which would contradict Theorem 3.9. The transformations
provided by the actual algorithm are particular cases of the ones provided in Corollary 5.2.

So it remains to check that the supplementary conditions on the degrees are necessary and sufficient to have that the
graph modified by these transformations is still a 3-leaf power.

• Assume W (x, y) = (Sx)SK is transformed into (Sx)SyK under the insertion of xy. Let u be the node of P(x, y) which gives
the letter S inW (x, y). If u is not ternary, it has to be node-split into two star nodes u′ and v, with node u′ still belonging
to P(x, y) (see step 2.a in algorithm of Corollary 5.2). Then in ST (G + xy), node v is made adjacent to the clique node
of P(x, y) (see step 2.b in algorithm of Corollary 5.2). This is in contradiction with Theorem 3.9 since that clique node
neighbours two star nodes. Suppose now that the S node u is ternary in ST (G) and let Ta (resp. Tb) be the maximal tree of
ST (G)−P(x, y) attached to u (resp. the K node of P(x, y)). It follows that ST (G+xy) satisfies the conditions of Theorem3.9
since Ta is a clique or a leaf, and the tree Tb a leaf.
• Assume W (x, y) = (Sx)SyK is transformed into (Sx)SK under the deletion of xy. Let u be the node of P(x, y) which gives

the letter Sy inW (x, y). As in the previous case, u has to be a ternary node. Otherwise, it has to be node-split into two star
nodes u′ and v, with u′ still belonging to P(x, y). Again by the transformation algorithm described in Corollary 5.2, the
clique node of P(x, y) in ST (G− xy) is neighbouring two star nodes, contradicting Theorem 3.9. Finally, by Theorem 3.9,
the node of ST (G)− P(x, y) adjacent to u is a clique or a leaf and the node of ST (G)− P(x, y) adjacent to the clique node
of P(x, y) is a leaf. It follows that ST (G− xy) satisfies the conditions of Theorem 3.9.
• The casesW (x, y) = KS(Sy) and W (x, y) = KSx(Sy) are symmetric to the previous ones.
• Assume W (x, y) = SxS is transformed into SxK under the insertion of xy. The same arguments as above imply that the

node giving letter S is ternary (and hence has its centre adjacent to a clique or a leaf), otherwise a clique would appear
between two stars while inserting xy, contradicting Theorem 3.9.
• AssumeW (x, y) = SxK is transformed into SxS under the deletion of xy. Then ST (G−xy) necessary satisfies the conditions

of Theorem 3.9 since the clique node in P(x, y) is adjacent to a leaf by Theorem 3.9 condition 2.
• The casesW (x, y) = SSy and W (x, y) = KSy are symmetric to the previous ones.
• Assume W (x, y) = S is transformed into K under the insertion of xy. Let u be the node of ST (G) which gives the letter S

inW (x, y) and let v be the neighbour of u such that ρu(uv) is the centre of the star Gu. By Theorem 3.9, v is either a clique
node of a leaf. If u is a ternary node, then G+xy is a clique and hence a 3-leaf power. Otherwise, u has to be node-split into
two star nodes u′ and v (as in the previous cases). In ST (G+ xy), the node u′ neighbouring the leaves x and y is changed
into a clique node. It follows that ST (G+ xy) satisfies the conditions of Theorem 3.9.
• AssumeW (x, y) = K is transformed into S under the deletion of xy. If the clique node u in P(x, y) is not ternary, then all

its neighbours in ST (G) have to be leaves. Assume u neighbours a star node w. As the edge-modification algorithm splits
u into two clique nodes u′ and v and then change u′ into a star, the clique node v would neighbour two star nodes in
ST (G− xy), contradicting Theorem 3.9. So assume u is ternary, then its third neighbour v distinct from x and y is a leaf or
a star. If v is a star and ρv(uv) is the centre of the star Gv , then the conditions of Theorem 3.9 are not satisfied. Otherwise,
it is clear that ST (G− xy) satisfies the conditions of Theorem 3.9.
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Finally, we just have to check that the supplementary conditions can be tested in constant time. The fact that a node of
P(x, y) is ternary or not can be checked in constant time. When the node is ternary, the fact that the adjacent node not in
P(x, y) is a clique, or a leaf, or a star oriented towards the clique, is also constant time by checking the type of this adjacent
node, and in the last case, by testing whether the centre marker vertex of the star is mapped to a tree-edge incident to a
ternary node. In the last case where a clique is not ternary, testing if all other nodes of ST (G) are leaves is done simply by
testing if G is a clique. �
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Appendix

For self-containment of the paper, we provide below a direct proof of Theorem 2.9 in the setting of graph-labelled trees.
It relies on next Proposition A.1, a result already underlying in [8], somehow the converse of Lemma 2.8, and providing also
a proof to the well-known fact that the splits of the graph form a bipartitive family.

Proposition A.1. Let (T , F ) be a reduced graph-labelled tree with prime and degenerate labels obtained by split decomposition
of a connected graph G = (V , E). Then every split of the graph G is the bipartition induced by removing a tree-edge of T ′, where
T ′ is obtained from (T , F ) by at most one node-split of a degenerate node.

Proof. Let (A, B) be a split of G, with V = A ⊎ B, A′ ⊆ A, B′ ⊆ B, and all edges between A and B having their extremities in
A′ and B′. We consider V as the set of leaves of T . For a node N of T and a vertex v of the label GN ∈ F of N , we say that v is
A′-accessible, resp. B′-accessible, if there exists u ∈ A′, resp. u ∈ B′, such that N is u-accessible and v is the marker vertex of
GN associated with the tree-edge of T in the path from N to u.

First, we prove the following assertion: if N is a node of T with label GN and three vertices u, v, w of GN are such that u
is both A′-accessible and B′-accessible, v ≠ u is A′-accessible and w ≠ u is B′-accessible, then N is a clique and every vertex
of GN is either A′-accessible or B′-accessible. We can assume v ≠ w. Indeed, if v = w, then let x be a vertex of GN adjacent
to u or v = w (it exists by connectivity Lemma 2.3). By Lemma 2.4, there exists a leaf x′ of T such that N is x′-accessible and
x is associated with the tree-edge of T in the path between N and x′ in T . Then x′ is adjacent to a vertex in A′ and a vertex in
B′, hence it belongs to A′ ∪ B′, hence x is A′-accessible or B′-accessible. So we can change v or w into x, and we assume now
that v ≠ w in the above hypothesis. Since V = A⊎B is a split of G, there is an edge in GN between every A′-accessible vertex
of GN and every B′-accessible vertex of GN . Assume there exist a vertex y of GN which is not A′-accessible nor B′-accessible.
By Lemma 2.4, there exists a leaf z of T such that N is z-accessible and y is associated with the tree-edge of T in the path
between N and z in T . Such a leaf z belongs either to A \ A′ or to B \ B′, otherwise there would be an edge between y and u in
GN and z would be adjacent to a vertex in A′ and to a vertex in B′, hence it would belong to A′∪B′ and ywould be A′-accessible
or B′-accessible. Assume for example that z belongs to A \ A′. Then the vertex y cannot be adjacent to a B′-accessible vertex
in GN . Then we consider the bipartition of vertices of GN into (1) all A′-accessible vertices except u, plus the vertex y, plus
all other vertices which are not A′-accessible nor B′-accessible and not adjacent to a B′-accessible vertex in GN , and (2) all
B′-accessible vertices including u, plus other vertices which are not A′-accessible nor B′-accessible and not adjacent to a
A′-accessible vertex in GN . The two parts of this bipartition have at least two elements, and thus it forms a split of GN . This
implies GN is degenerate, hence it is a clique since it contains a K3. And this implies that a vertex ywhich is not A′-accessible
nor B′-accessible does not exist.

Now consider the subtrees T [A′] and T [B′] of T spanned respectively by A′ and B′. We prove the assertion: T [A′] and T [B′]
have at most one common node. Assume that these two subtrees have at least two common nodes of T . Then they have
a common path of T , and then they have a common tree-edge e and two adjacent common nodes R and S, which are the
extremities of e. For each of these nodes, by definition of T [A′] and T [B′], there exists a leaf in A′ and a leaf in B′ such that the
path from the node to the leaf does not contain e. Since all leaves in A′ are accessible from all leaves in B′, each node R and
S has an A′-accessible vertex and a B′-accessible vertex, not associated with e. That is: both R and S satisfy the hypothesis of
the previous assertion. Hence both R and S are cliques, a contradiction with the fact that the graph-labelled tree is reduced.

So, there are two possible cases: either (1) there exists a tree-edge e of T such that all leaves in A′ are in one connected
component of T − e, and all leaves in B′ are in the other connected component, or (2) there exists a node N such that the
connected components of T−N contain either leaves inA′ or leaves inB′ but not both, and at least two connected components
contain leaves in A′ resp. B′ (otherwise a tree-edge would satisfy the case 1 property).

In the first case, we denoteNA, resp.NB the extremity of the tree-edge e on the side of A′, resp. B′, vertices. If the bipartition
of V induced by T −e is V = A⊎B, then we have the result. Otherwise, there exists for example a leaf a in A in the connected
component of T − e containing leaves in B′. Consider the accessibility graph H of this connected component, where the
marker vertex associated with e in NB is a vertex ve. Since H does not contain vertices in A′, a vertex in A is adjacent in H
either to ve or to another vertex belonging to A. Hence ve is an articulation vertex of H , such that each connected component
ofH−ve has its set of vertices included in A\A′ or in B. Then the vertex ve ofNB is an articulation vertex of its label. Indeed, say
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that a vertex v ≠ ve is A-accessible, resp. B-accessible, if there exists a leaf w ∈ A, resp. w ∈ B, such that NB is w-accessible
and v is associated to the path between NB andw. Then the vertices of NB−ve are either A-accessible or B-accessible, maybe
both, but these two sets are not empty and a A-accessible vertex is not adjacent to a B-accessible vertex. Since the label of
NB has an articulation vertex, it has obviously a split, hence it is degenerate, and it is not a clique, hence it is a star. Then
a vertex v of NB − ve is either A-accessible or B-accessible, but not both. Otherwise the node at the other extremity of the
tree-edge associated with v would have the same property as NB in terms of articulation vertex, hence it would be a star
also, which would be a contradiction with the fact that the graph-labelled tree is reduced. Now, there cannot be a leaf b in B
in the connected component of T − e containing leaves in A′, otherwise NA would also be a star and there would be an edge
between a vertex of A \ A′ and a vertex of B \ B′. So, finally, splitting the node NB into ve plus the A-accessible vertices on
one hand, and the B-accessible vertices on the other hand, creates a tree-edge e which separates the leaves of the tree into
A and B.

In the second case, since there is an edge in G between every vertex in A′ and every vertex in B′, then everymarker vertex
in the label of N is either A′-accessible or B′-accessible, but not both. Hence there is a split in N formed by A′-accessible
and B′-accessible vertices. Hence N is a clique node. Assume a leaf a ∈ A is in a connected component of T − N containing
vertices in B′. Then a ∉ A′. Let v be the marker vertex of N associated with the tree-edge of T adjacent to this connected
component. Then v has to be A-accessible. Otherwise, the accessibility graph of the connected component would not be
connected, contradicting Lemma 2.3. Since there are at least two connected components of T − N containing vertices in
B′, and since N is a clique, then there is an edge between a vertex in A \ A′ and a vertex in B′, which is a contradiction. So
the connected components of T − N contain either leaves in A or leaves in B but not both. And, finally, splitting the node N
respectively with this partition creates a tree-edge ewhich separates the leaves of the tree into A and B. �

Proof of Theorem 2.9. With Proposition A.1, the list of splits of the graph determines the list of partitions of leaves of the
tree induced by tree-edge or node removals. It is an easy combinatorial property that this list determines completely the tree.
Then the labels are necessarily determined by the graph structure. So, the whole graph-labelled tree is uniquely determined
by the graph. �
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